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Chapter 1

Introduction

1.1 Basic Set Theory

Definition 1.1. A set is a collection of things referred to as its members
or elements. We write t ∈ A to say that t is an element of A. We write
t /∈ A to say that t is not an element of A.

Notation 1.2. Let A be a set with some elements t1, t2, . . . (not necessarily
a finite amount). We write

A = {t1, t2, . . . }

Axiom 1.3. Axiom of Extensionality
Let A and B be sets such that for every object t, we have

t ∈ A ⇐⇒ t ∈ B

Then A = B.

Notation 1.4. If two sets A and B are not equal, we write A 6= B.

Example 1.5. Consider the set

∅ = {}

In other words, ∅ is the set containing no elements. By the axiom of exten-
sionality, ∅ is unique. We call ∅ the empty set.
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Remark. Note that {∅} 6= ∅. The former is a set containing exactly one
element (namely the empty set) while the latter is a set containing no ele-
ments.

Example 1.6. Consider the two sets X1 = {x, y} and X2 = {y, x}. By the
axiom of extensionality, we have that X1 = X2. We see that the ordering of
elements in a set does not affect the properties of the set.

Notation 1.7. Let A be a set and t a prospective element of A. Let P (t)
be a logical statement - called the entrance requirement - that determines
whether or not t ∈ A. We write

A = { t | P (t) }

This method of declaring sets is called abstraction
We write ∨ for the logical or operator. In other words, let A and B be two
logical statements. Then A ∨ B is true if A is true or if B is true or if both
A and B are true.

We write ∧ for the logical and operator. In other words, let A and B
be two logical statements. Then A ∧ B is true if and only if both A and B
are true.

Remark. One must be careful when using abstraction. Consider the follow-
ing set

A = {x | x /∈ x }

We are interested in whether or not A is a member of itself. If A /∈ A then
A meets the entrance requirement for A and thus A ∈ A. But if A ∈ A
then A fails to meet the entrace requirement and thus A /∈ A. Obviously the
given entrance requirement must be illegal. This is referred to as Russell’s
Paradox.

Definition 1.8. Let A and B be two sets. We define the union of A and
B to be the set

A ∪B = { t | t ∈ A ∨ t ∈ B }

Definition 1.9. Let A and B be two sets. We define the intersection of
A and B to be the set

A ∩B = { t | t ∈ A ∧ t ∈ B }

If A ∩B = ∅, we say that A and B are disjoint.
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Definition 1.10. We say that A is a subset of B if every element of A is
an element of B and is denoted by A ⊆ B. In other words,

A ⊆ B ⇐⇒ (∀ t ∈ A =⇒ t ∈ B)

If A ⊆ B, we say that A is included in B or B includes A.

Example 1.11. Let A be a set. Then A ⊆ A.

Example 1.12. Let A be a set. Then ∅ ⊆ A. We say that this fact is
vacuously true since the task of verifying it requires doing nothing at all.

Definition 1.13. Let A be a set. We denote the power set of A to be

PA = {X | X ⊆ A }

In other words, PA is the set of all subsets of A.



Chapter 2

Axioms and Operations

From now on, we shall work in the Zermelo-Fraenkel framework which
asserts that not every collection of objects (or class) is a set. This allows
us to disregard Russell’s Paradox as we can assume that such a set does not
exist. We now reformulate the first chapter in terms of the axioms of set
theory.

Axiom 2.1. Extensionality axiom
If two sets have the same members, then they are equal:

∀A ∀B [∀x (x ∈ A ⇐⇒ x ∈ B) =⇒ A = B]

Axiom 2.2. Empty Set Axiom
There is a set that contains no members:

∃B ∀x, x /∈ B

Definition 2.3. We define the empty set or ∅ to be the set containing no
members. The existence of ∅ is guaranteed by the empty set axiom and its
uniqueness is guaranteed by the extensionality axiom.

Axiom 2.4. Pairing Axiom
Let u and v be sets. Then there is a set that contains only u and v:

∀u∀ v ∃B ∀x (x ∈ B ⇐⇒ x = u ∨ x = v)

Definition 2.5. Let u and v be sets. The pair set {u, v} is the set whose
members are u and v.
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Axiom 2.6. Union Axiom
Let a and b be sets. Then there is a set whose members are those sets belong-
ing either to a or to b (or both):

∀ a∀ b∃B ∀x (x ∈ B ⇐⇒ x ∈ A ∨ x ∈ B)

Definition 2.7. Let a and b be sets. The union a ∪ b is the set whose
members are those sets belonging either to a or to b (or both).

Axiom 2.8. Power Set Axiom
Let a be a set. Then there is a set whose members are exactly the subsets of
a:

∀ a ∃B ∀x (x ∈ B ⇐⇒ x ⊆ a)

Definition 2.9. For any set a, the power set Pa is the set whose members
are exactly the subsets of a.

Definition 2.10. Let x be a set. We define the singleton {x} to be the set
{x, x}, the existence of which is guaranteed by the Pairing Axiom. Given the
sets x1, x2, x3, we can define {x1, x2, x3} = {x1, x2} ∪ {x3}. Continuing like
this, we can define a set with any aribitrary number of members.

Axiom 2.11. Subset Axioms
Let t1, . . . , tk and c be sets and let P (t1, . . . , tk) be a formula (or logical state-
ment) not containing B but mentioning t1, . . . , tk. Then there exists a set B
whose members are exactly those sets x in c such that P (t1, . . . , tk) is true:

∀ t1 . . . ∀ tk ∀ c∃B ∀x (x ∈ B ⇐⇒ x ∈ c ∧ P (t1, . . . , tk))

Remark. Zermelo originally referred to these axioms as the Aussonderung
axioms literally meaning the ‘seperating-out’ axioms. Such a collection of
axioms is referred to as an axiom schema.

Example 2.12. Let t1 = a be a set and P (a) := x ∈ a a formula. Then

∀ a∀ c∃B ∀x(x ∈ B ⇐⇒ x ∈ c ∧ x ∈ a)

is a subset axiom. This axiom asserts the existence of the intersection c ∩ a
of c and a.
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Example 2.13. Let t1 = a and P (a) := x /∈ a. Then

∀ a∀ c∃B ∀x(x ∈ B ⇐⇒ x ∈ c ∧ x /∈ a)

is a subset axiom. This axiom asserts the existence of the relative comple-
ment of a in c. This is denoted by B = c\a

Theorem 2.14. There is no set to which every set belongs.

Proof. Let A be a set. We shall construct a set that is not contained in A.
Let

B = {x ∈ A | x /∈ x }

We claim that B /∈ A. We have that, by the definition of B,

B ∈ B ⇐⇒ B ∈ A ∧B /∈ B

Now if B ∈ A

B ∈ B ⇐⇒ B /∈ B

This is impossible as one side must be true and the other side must be false.
Hence B ∈ A. Therefore there cannot exist a set containing all sets.

Remark. We end this section by remarking that, in order to avoid illegal
construction of sets, we require that formulas be rigorously stated in terms of
logical symbols.

2.1 Arbitrary Unions and Intersections

The union axiom allows us to form the union a ∪ b of two sets a and b. By
repeating the operation, we can form the union of finitely many sets. In order
to take the union of infinitely many sets, we require the following definition:

Definition 2.15. Let A be a set. The union
⋃
A of A is the set defined by⋃

A = {x | (∃ b ∈ A)x ∈ b }

We now need an improved version of the union axiom in order to know
that a set containing the members of the members of A actually exists.



CHAPTER 2. AXIOMS AND OPERATIONS 7

Axiom 2.16. Union Axiom
Let A be a set. Then there exists a set B whose elements are exactly the
members of the members of A:

∀x [x ∈ B ⇐⇒ (∃ b ∈ A)x ∈ b]

Definition 2.17. Let A be a non-empty set. We define the intersection⋂
A of A by ⋂

A = {x | (∀ b ∈ A)x ∈ b }

Theorem 2.18. Let A be a non-empty set. Then there exists a unique set
B such that for any x,

x ∈ B ⇐⇒ (∀ b ∈ A)x ∈ b

Proof. Let c ∈ A (the existence of which is guaranteed by the fact that A is
non-empty). Then by the subset axiom, there is a set B such that for any x,

x ∈ B ⇐⇒ (x ∈ c) ∧ ([∀b 6= c ∈ A]x ∈ b)
⇐⇒ (∀ b ∈ A)x ∈ b

Now the uniqueness of B follows from the axiom of extensionality.

Remark. Consider A =
⋂

∅. For any x, it is vacuously true that x belongs
to any member of A (since there can not exist a member of A to which x
fails to belong). It would appear that A is a set containing all sets. But by
Theorem 2.14, there cannot exist such a set. This is solved by either leaving⋂

∅ as undefined or by defining it as some arbitrary set (usually ∅).

Example 2.19. Let b ∈ A. Then b ⊆
⋃
A.

Example 2.20. Let {{x}, {x, y}} ∈ A. Then {x, y} ∈
⋃
A, x ∈

⋃⋃
A and

y ∈
⋃⋃

A.

Example 2.21.
⋂
{{a}, {a, b}} = {a}∩{a, b} = {a}. Therefore

⋃⋂
{{a}, {a, b}} =⋃

{a} = a. On the other hand,
⋂⋃
{{a}, {a, b}} =

⋂
{a, b} = a ∩ b.
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2.2 Algebra of Sets

Definition 2.22. Let A and B be two sets. We define the relative com-
plement of B in A A\B to be

A\B = {x ∈ A | x /∈ B }

Remark. Given two sets A and B, the existence of the relative complement
of B in A is guaranteed by the subset axioms.

Remark. Let A be a set. Another complement of interest is the absolute
complement. In other words, A′ = {x | x /∈ A }. Such a set cannot exist
as the union axiom would imply that A ∪ A′ exists. But A ∪ A′ is a set that
contains all sets which contradicts Theorem 2.14.

Proposition 2.23. Commutative Laws
Let A and B be sets. Then we have that

A ∪B = B ∪ A
A ∩B = B ∩ A

Proof. The proof of this proposition is trivial and follows directly from the
definitions of set union and intersection.

Proposition 2.24. Associative Laws
Let A and B be sets. Then we have that

A ∪ (B ∪ C) = (A ∪B) ∪ C
A ∩ (B ∩ C) = (A ∩B) ∩ C

Proof. We shall only prove the second identity.

⊆: Let x ∈ A∩ (B∩C). We must show that x ∈ (A∩B)∩C. By definition
of set intersection, we must have that x ∈ A and x ∈ B ∩ C. Again by
definition of the intersection, we must have that x ∈ B and x ∈ C. Now
obviously, x ∈ A ∩B. But since x ∈ C, we must have x ∈ (A ∩B) ∩ C.

The opposite direction then follows by a similar argument and the two sets
are equal.

Proposition 2.25. Distributive Laws
Let A,B and C be sets. Then we have that

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)
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Proof.

Part 1:

⊆: Let x ∈ A ∩ (B ∪ C). We need to show that x ∈ (A ∩ B) ∪ (A ∩ C).
By definition of set intersection, we have that x ∈ A and x ∈ B ∪ C. By
definition of set union, we have that x ∈ B or x ∈ C. Suppose first that
x ∈ B. Then x ∈ A and x ∈ B and thus x ∈ A ∩ B whence it follows that
x ∈ (A∩B)∪ (A∩C). A similar argument can be applied for the case where
x ∈ C.

⊇: Let x ∈ (A ∩ B) ∪ (A ∩ C). We must show that x ∈ A ∩ (B ∪ C). By
definition of set union, we have that x ∈ A ∩B or x ∈ A ∩ C. Suppose that
x ∈ A∩B. Then it follows from the definition of set intersection that x ∈ A
and x ∈ B. Obviously, x ∈ B ∪ C and thus x ∈ A ∩ (B ∪ C). A similar
argument can be applied for the case where x ∈ A ∩ C.

Part 2:

⊆: Let x ∈ A ∪ (B ∩ C). We need to show that x ∈ (A ∪ B) ∩ (A ∪ C).
By definition of set union, we have that x ∈ A or x ∈ B ∩ C. Suppose
first that x ∈ A. Then obviously x ∈ A ∪ B and x ∈ A ∪ C. But then
x ∈ (A ∪B) ∩ (A ∪ C).
Now suppose that x ∈ B ∩ C. By the definition of set intersection, x ∈ B
and x ∈ C. It then follows that x ∈ A∪B and x ∈ A∪C whence we obtain
x ∈ (A ∪B) ∩ (A ∪ C).

⊇: Let x ∈ (A ∪ B) ∩ (A ∪ C). We need to show that x ∈ A ∪ (B ∩ C).
By the definition of set intersection, we have that x ∈ A∪B and x ∈ A∪C.
By the definition of set union, we have four different possible cases. If x ∈ A
then trivially, x ∈ A∪ (B ∩C). This leaves us with the case that x ∈ B and
x ∈ C. But then x ∈ B ∩ C whence it follows that x ∈ A ∪ (B ∩ C).

Proposition 2.26. De Morgan’s Laws
Let A,B and C be sets. We have that

C\(A ∪B) = (C\A) ∩ (C\B)

C\(A ∩B) = (C\A) ∪ (C\B)
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Proof.

Part 1:

⊆: Let x ∈ C\(A ∪ B). We must show that x ∈ (C\A) ∩ (C\B). By
definition of the relative complement, we have that x ∈ C but x /∈ A ∪ B.
It thus follows that x /∈ A and x /∈ B. Hence x ∈ C\A and x ∈ C\B.
Therefore, x ∈ (C\A) ∩ (C\B).

⊇: Let x ∈ (C\A) ∩ (C\B). We must show that x ∈ C\(A ∪ B). By
the definition of set intersection, x ∈ C\A and x ∈ C\B. It follows by the
definition of the relative complement that x ∈ C but x /∈ A and x /∈ B.
Obviously, x /∈ A ∪B and therefore, x ∈ C\(A ∪B).

Part 2:

⊆: Let x ∈ C\(A ∩ B). We must show that x ∈ (C\A) ∪ (C\B). By
the definition of the relative complement, x ∈ C but x /∈ A ∩ B. By the
definition of set intersection, x /∈ A or x /∈ B or both. Suppose first that
x /∈ A. Then since x ∈ C, we have that x ∈ C\A whence it follows that
x ∈ (C\A) ∪ (C\B). A similar argument can be applied to the other two
cases.

⊇: Let x ∈ (C\A) ∪ (C\B). We must show that x ∈ C\(A ∩ B). By
the definition of set union, we have that x ∈ C\A or x ∈ C\B. Suppose
first that x ∈ C\A. Then by the definition of the relative complement, we
must have that x ∈ C but x /∈ A. If x /∈ A then obviously x /∈ A ∩ B.
Therefore x ∈ C\(A ∩ B). A similar argument can be applied for the case
that x ∈ C\B.

Proposition 2.27. Let A and B be two sets. We have that

A ∪∅ = A

A ∩∅ = ∅
A ∩ (C\A) = ∅

Proof. These identities follow directly from the relevant definitions.
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Proposition 2.28. Monotone Properties
Let B be a set and A ⊆ B a subset. For any set C, we have the following

A ∪ C ⊆ B ∪ C
A ∩ C ⊆ B ∩ C⋃

A ⊆
⋃

B

Proof.

Part 1: Let x ∈ A∪C. We want to show that x ∈ B ∪C. By the definition
of set union, x ∈ A or x ∈ C. Suppose first that x ∈ A. Then since A ⊆ B,
we must have that x ∈ B. Then x ∈ B ∪ C. Now suppose that x ∈ C. It
follows that x ∈ B ∪ C.

Part 2: Let x ∈ A ∩ C. We need to show that x ∈ B ∩ C. By definition of
set intersection, we have that x ∈ A and x ∈ C. Since A ⊆ B, we must have
that x ∈ B. Thus x ∈ B ∩ C.

Part 3: Let x ∈
⋃
A. We must show that x ∈

⋃
B. By the definition of the

arbitrary union, we have that (∃ b ∈ A)x ∈ b. Since A ⊆ B, we must have
that b ∈ B. But then x ∈ b ∈ B and thus x ∈

⋃
B.

Proposition 2.29. Antimonotone Properties
Let B be a set and A ⊆ B a subset. For any set C we have

C\B ⊆ C\A

and if A 6= ∅ then ⋂
B ⊆

⋂
A

Proof.

Part 1: Let x ∈ C\B. We need to show that x ∈ C\A. By the definition
of the relative complement, we have that x ∈ C but x /∈ B. Obviously, since
A ⊆ B, we necessarily have that x /∈ A. It hence follows that x ∈ C\A.

Part 2: Let x ∈
⋂
B. We need to show that x ∈

⋂
A. By the definition

of the arbitrary intersection, we have that (∀ b ∈ B)x ∈ B. Each such b is
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either a member of A or is not. Choose all such sets that are members of A.
Necessarily, since A ⊆ B, such sets must be all the members of A. Since all
such sets contain x, we must have that x ∈

⋂
A.

Remark. The Distributive and De Morgan’s Laws can easily be extended to
arbitrary unions and intersections of sets (in the natural way), taking care
not to allow the empty set in cases where the intersection of the empty set
may arise.

Notation 2.30. Let X be a set. When arbitrary intersections or unions of
X are involved with some other set A we will employ a notation demonstrated
by the following example:⋂

x∈X

(A ∪X) =
⋂
{A ∪X | x ∈ X }



Chapter 3

Relations and Functions

3.1 Ordered Pairs

Definition 3.1. We define an unordered pair to be a structure containing
two element that encodes no information about the ordering of its elements.

Example 3.2. Consider the pair set {1, 2}. This is an unordered pair since
{1, 2} = {2, 1}

Definition 3.3. We define the ordered pair 〈x, y〉 to be the set {{x}, {x, y}}.

Theorem 3.4. Let 〈x, y〉 and 〈u, v〉 be ordered pairs. Then 〈x, y〉 = 〈u, v〉 if
and only if x = u and y = v.

Proof.

=⇒ : Suppose that 〈x, y〉 = 〈u, v〉. We need to show that x = u and
y = v. By the definiton of the ordered pair, we have that {{x}, {x, y}} =
{{u}, {u, v}}. Necessarily, {x} ∈ {{u}, {u, v}} and {x, y} ∈ {{u}, {u, v}}.
We thus have that {x} = {u} or {x} = {u, v} and {x, y} = {u} or {x, y} =
{u, v}. We shall check each case individually.

Suppose that {x} = {u} and {x, y} = {u}. We thus have that {u} =
{x, y} = {u, y}. It follows that y = u. Now looking back at the original
condition, we see that {{u}} = {{u}, {u, v}}. The only option is that v = u
and thus x = u = y = v.

Now assume that {x} = u and {x, y} = {u, v}. We have that {u, y} = {u, v}.

13
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By the axiom of extensionality, we either have that y = v or that u = v and
y = u. In the former case we are done. The latter case also implies that y = v.

Suppose now that {x} = {u, v} and {x, y} = {u}. The axiom of exten-
sionality implies that x = u = v = y.

Now assume that {x} = {u, v} and {x, y} = {u, v}. Then again, the ax-
iom of extensionality implies that x = u = v = y.

⇐= : Suppose that x = u and y = v. Then it follows trivially that
〈x, y〉 = 〈u, v〉.

Example 3.5. Consider the set R of all real numbers. The pair 〈x, y〉 where
x, y ∈ R can be visualised as a point in the Cartesian plane. We say that x
and y are coordinates of 〈x, y〉.

Definition 3.6. Let A and B be sets. We define their Cartesian product
A×B to be the set

A×B = { 〈x, y〉 | x ∈ A ∧ y ∈ B }

This definition does not make much sense if we do not verify that A×B is
indeed a set (it could be a class). To do this, we shall find a set that contains
all such pairs 〈x, y〉 and then utilise a suitable subset axiom to deduce that
A×B exists. The following Lemma gives us the desired set.

Lemma 3.7. Let C be a set and x, y ∈ C two elements. Then 〈x, y〉 ∈ PPC.

Proof. Let x, y ∈ C. Then obviously, {x} ⊆ C and {x, y} ⊆ C. By the
definition of the power set, it follows that {x} ∈ PC and {x, y} ∈ PC. By the
union axiom, we know that {{x}, {x, y}} ⊆ PC. Thus {{x}, {x, y}} ∈ PPC.
Now by the definition of the ordered pair, it follows that 〈x, y〉 ∈ PPC

Corollary 3.8. Let A and B be sets x ∈ A, y ∈ B elements. Then there
exists a set whose members are exactly the ordered pairs 〈x, y〉.

Proof. By a subset axiom, we can construct the set

{w ∈ PP(A ∪B) | w = 〈x, y〉 }

Obviously this set must only contain elements that take the form of an or-
dered pair. Now the previous lemma implies that such a set contains all such
ordered pairs with x ∈ A and y ∈ B.
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3.2 Relations

Definition 3.9. A relation is a set of ordered pairs.

Notation 3.10. Let R be a relation and 〈x, y〉 ∈ R an ordered pair. We
write xRy in the place of 〈x, y〉 ∈ R.

Example 3.11. Consider the ordering relation < on R:

< = { 〈x, y〉 ∈ R× R | x < y }

Example 3.12. Let ω = { 0, 1, 2, . . . }. We can consider the divisibility
relation

{ 〈m,n〉 ∈ ω × ω | (∃ p ∈ ω)mp = n }

We also have the identity relation:

Iω = { 〈n, n〉 | n ∈ ω }

Definition 3.13. Let R be a relation. We define the domain of R, dom R,
to be the set

domR = {x | (∃ y) 〈x, y〉 ∈ R }

Definition 3.14. Let R be a relation. We define the range of R, ran R, to
be the set

ranR = {x | (∃ t) 〈t, x〉 ∈ R }

Definition 3.15. Let R be a relation. We define the field of R, fld R, to be
the set

fldR = domR ∪ ranR

In order for these definitions to make sense, we need to make sure the set
of first and second coordinates indeed exists. The following lemma shows the
existence of a set containing such coordinates.

Lemma 3.16. Let 〈x, y〉 be an ordered pair contained in some set A. Then
x and y belong to

⋃⋃
A.
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Proof. By definition of an ordered pair, we have that { {x } , {x, y } } ∈ A.
It follows from the definition of the union that {x, y } ∈

⋃
A. The definition

of the union now implies that x, y ∈
⋃⋃

A.

It now suffices to apply a suitable subset axiom to the set constructed in
the previous lemma to arrive at the definitions of the domain and range of a
relation R:

domR =
{
x ∈

⋃⋃
R
∣∣∣ (∃ y) 〈x, y〉 ∈ R

}
ranR =

{
x ∈

⋃⋃
R
∣∣∣ (∃ t) 〈t, x〉 ∈ R

}
3.3 n-ary Relations

We can generalise the idea of ordered pairs to higher dimensional concepts.
For example, we can define an ordered triple as

〈x, y, z〉 = 〈〈x, y〉 , z〉

We can continue nesting the ordered tuples as above in order to arrive at an
ordered n-tuple for any n > 1. For completeness, we define the 1-tuple 〈x〉
to be just x.

Definition 3.17. Let A be a set. We define an n-ary relation on A to be
the set of ordered n-tuples with all components in A.

3.4 Functions

Definition 3.18. Let F be a relation. We say that F is a function if for
each x ∈ domF , there exists a unique y such that xFy. Such a unique
element is called the value of F at x and is denoted by F (x).

Definition 3.19. Let F be a function. We say that F is a function from
A into B or that F maps A into B, written F : A → B, if domF = A
and ranF ⊆ B. If ranF = B then we say that F is surjective or onto.

Definition 3.20. Let R be a relation. We say that R is single-rooted if
for each y ∈ ranR, there is only one x such that xRy. Furthermore, if R is
a single-rooted function, we say that R is injective or one-to-one.
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Definition 3.21. Let A,F and G be relations. Then

1. The inverse of F is the set

F−1 = { 〈u, v〉 | vFu }

2. The composition of F and G is the set

F ◦G = { 〈u, v〉 | ∃ t(uGt ∧ tFv) }

3. The restriction of F to A is the set

F |A = { 〈u, v〉 | uFv ∧ u ∈ A }

4. The image of A under F is the set

F JAK = ran(F |A)

Remark. In the case that F is a function and A ⊆ domF , we can charac-
terise F JAK as follows:

F JAK = {F (u) | u ∈ A }

Remark. Again these definitions only make sense if the corresponding col-
lections are indeed sets. We have that

1. F−1 ⊆ ranF × domF

2. F ◦G ⊆ domG× ranF

3. F |A ⊆ F

4. F JAK ⊆ ranF

By the previous section we know that the right hand side of the above set
inclusions are indeed sets. For each case we can therefore apply a suitable
subset axiom to show that the left hand sides are sets.

Example 3.22. Consider the function F : R → R given by the equation
F (x) = x2. Let A = [−1, 2]. Then F JAK = [0, 4] and F−1 JAK = [−

√
2,
√

2]
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Example 3.23. Let G : R → R be the trigonometric sine function G(x) =
sin(x). Then G−1 is not a function. Indeed, consider 1 ∈ domG−1. Then〈
1, π

2

〉
and

〈
1, 5π

2

〉
are both in G−1. However, the restriction

F = G|[−π
2
,π
2 ]

is an injective function and hence its inverse is a function.

Theorem 3.24. Let F be a set. Then domF−1 = ranF and ranF−1 =
domF . Furthermore, if F is a relation then (F−1)−1 = F .

Theorem 3.25. Let F be a set. Then F−1 is a function if and only if F is
single-rooted. Furthermore, a relation F is a function if and only if F−1 is
single-rooted.

Theorem 3.26. Let F be an injective function. If x ∈ domF then F−1(F (x)) =
x. If y ∈ ranF then F (F−1(y)) = y.

Proof. Let x ∈ domF . Then by the definition of a function and its inverse,
we have that 〈x, F (x)〉 ∈ F and 〈F (x), x〉 ∈ F−1. Hence F (X) ∈ domF−1.
Since F is injective, it follows from Theorem 3.26 that x = F−1(F (x)).
Now let y ∈ ranF . We can apply the first part of the theorem to F−1

to see that (F−1)−1(F−1(y)) = y. But by Theorem 3.24, we know that
(F−1)−1 = F . Hence F (F−1(y)) = y.

Theorem 3.27. Let F and G be functions. Then F ◦ G is a function with
domain

{x ∈ domG | G(x) ∈ domF }

and for any x in its domain, (F ◦G)(x) = F (G(x)).

Proof. Suppose that x(F ◦ G)y = x(F ◦ G)z. We need to show that y = z.
By the definition of the composition, we have that for some a and b,

xGa ∧ aFy
xGb ∧ bFz

Since G and F are functions, we must have that a = b and y = z.

Now let x ∈ domG and G(x) ∈ domF . We need to show that x ∈
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dom (F ◦ G) and (F ◦ G)(x) = F (G(x)). By definition, we have that
〈x,G(x)〉 ∈ G and 〈G(x), F (G(x))〉 ∈ F. Therefore 〈x, F (G(x))〉 ∈ F ◦G.
Finally, suppose that xindomF ◦ G. Then there exists some y and t such
that xGt and tFy. Thus, x ∈ domG and t = G(x) ∈ domF .

Example 3.28. Let G be an injective function. Then by Theorem 3.27,
G−1 ◦G is a function with domain

{x ∈ domG | G(x) ∈ domG−1 } = domG

For any x in its domain, Theorem 3.26 implies that

(G−1 ◦G)(x) = G−1(G(x))

= x

Hence G−1 ◦G = IdomG or, in other words, the identity function on domG.
Similarly, we can show that G ◦G−1 = IranG.

Theorem 3.29. Let F and G be relations. Then

(F ◦G)−1 = G−1 ◦ F−1

Proof. We have that

〈x, y〉 ∈ (F ◦G)−1 ⇐⇒ 〈y, x〉 ∈ F ◦G
⇐⇒ yGt ∧ tFx for some t

⇐⇒ xF−1t ∧ tG−1y for some t

⇐⇒ 〈x, y〉 ∈ G−1 ◦ F−1

Axiom 3.30. Axiom of Choice
Let R be a relation. Then there exists a function H ⊆ R such that domH =
domR.

Theorem 3.31. Let F : A → B where A is non-empty. Then we have the
following

1. There exists a function G : B → A, referred to as a left-inverse, such
that G◦F is the identity function IA on A if and only if F is injective.
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2. There exists a function H : B → A, referred to as a right-inverse,
such that F ◦ H is the identity function IB on B if and only if F is
surjective

Proof.

Part 1:

=⇒ : Assume that there exists a function G such that G◦F = IA. Suppose
that F (x) = F (y). We need to show that x = y. Applying G to both sides
of the equation, we see that G(F (x)) = G(F (y)). But G is a left inverse of
F so it follows that x = y and thus F is injective.

⇐= : Now assume that F is injective. Then F−1 is a function from ranF
onto A. We shall extend F−1 to a function G that is defined on the whole of
B. Choose a ∈ A, the existence of which is guaranteed by the fact that A is
non-empty. We can then define G as follows:

G(x) =

{
F−1(x) if x ∈ ranF
a if x ∈ B\ranF

In other words, G sends any point in B\ranF to the element a. Obviously
G is a function mapping B into A. Furthermore, dom (G ◦ F ) = A and
G(F (x)) = F−1(x)) = x for each x ∈ A. Therefore G ◦ F = IA.

Part 2:

=⇒ : Assume that there exists a function H such that F ◦ H = IB.
Let y ∈ B. We have that y = F (H(y)). Hence y ∈ ranF and thus F is
surjective.

⇐= : By the axiom of choice, we can choose a function H ⊆ F−1 such that
domH = domF−1. Since F is surjective, we have that domH = domF−1 =
ranF = B. The function H satisfies the results of the theorem. Indeed, H
is a function from B into A. Let y ∈ B. Then 〈y,H(y)〉 ∈ F−1 and thus
F (H(y)) = y.

Theorem 3.32. Let F be a relation and A and B sets. Then

1. F JA ∪BK = F JAK ∪ F JBK
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2. F J
⋃
AK =

⋃
{F JAK | A ∈ A}

3. F JA ∩BK ⊆ F JAK ∩ F JBK

4. F J
⋂
AK ⊆

⋂
{F JAK | A ∈ A}

5. F JAK \F JBK ⊆ F JA\BK

In parts 3,4 and 5, equality holds if F is single-rooted.

Proof. We shall only prove parts 2, 4 and 5. Parts 1 and 3 are simply special
cases of parts 2 and 4.

Part 2: Let y ∈ F J
⋃
AK. We have that

y ∈ F
r⋃
A

z
⇐⇒

(
∃x ∈

⋃
A
)
xFy

⇐⇒ (∃x ∈ A1)xFy ∨ (∃x ∈ A2)xFy ∨ (∃x ∈ A3)xFy ∨ . . .
⇐⇒ (y ∈ F JA1K) ∨ (y ∈ F JA2K) ∨ (y ∈ F JA3K) ∨ . . .

⇐⇒ y ∈
⋃
{F JAK | A ∈ A}

where A1, A2, A3, . . . are understood to be the elements of A.

Part 4: Let y ∈ F J
⋂
AK. We have that

y ∈ F
r⋂
A

z
⇐⇒

(
∃x ∈

⋂
A
)
xFy

=⇒ (∃x ∈ A1)xFy ∧ (∃x ∈ A2)xFy ∧ . . .
⇐⇒ (y ∈ F JA1K) ∧ (y ∈ F JA2K) ∧ . . .

⇐⇒ y ∈
⋂
{F JAK | A ∈ A}

where A1, A2, . . . are understood to be the elements of A.
Now consider the second implication. It is not reversible as the individual
elements chosen from each A ∈ A may be different and thus may not lie in
all such A. However, if F is single rooted than there can only be once such
x where xFy. Hence such an x must lie in all A ∈ A and the implication
becomes reversible.

Part 5: Let y ∈ F JAK \F JBK. We have that

y ∈ F JAK \F JBK ⇐⇒ (∃x ∈ A)xFy ∧ (@ t ∈ B)tFy

=⇒ (∃x ∈ A\B)xFy

⇐⇒ y ∈ F JA\BK
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Now consider the second implication. It is not reversible as x may not nec-
essarily be the only element such that xFy. If F is single-rooted then this
condition is satisfied and we may reverse the implication.

Corollary 3.33. Let G be a function and A,B,A sets. Then

1. G−1 J
⋃
AK =

⋃
{G−1 JAK | A ∈ A}

2. G−1 J
⋂
AK =

⋂
{G−1 JAK | A ∈ A} for A 6= ∅

3. G−1 JA\BK = G−1 JAK \G−1 JBK

Proof. This corollary of Theorem 3.32 follows immediately from the fact that
the inverse of a function is always single-rooted.

Definition 3.34. Let I be an indexing set and F a function such that I ⊆
domF . Then we define ⋃

i∈I

F (i) =
⋃
{F (i) | i ∈ I }⋂

i∈I

F (i) =
⋂
{F (i) | i ∈ I }

where in the second equation, we require that I be non-empty.

Definition 3.35. Let A and B be sets. We define the set B-pre-A to be

AB = {F | F : A→ B }

Remark. If F : A → B then F ⊆ A × B. Hence F ∈ P(A × B). We can
then apply a suitable subset axiom to P(A×B) to construct the set AB.

Example 3.36. Consider ω = { 0, 1, 2, . . . }. Then ω { 0, 1 } is the set of all
possible functions f : ω → { 0, 1 }.

Example 3.37. Let A be nonempty. We have that A∅ = ∅. This is because
no function can map a non-empty domain into an empty range. On the other
hand, ∅A = {∅ } since ∅ is the only function with an empty domain.
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3.5 Infinite Cartesian Products

Definition 3.38. Let I be an indexing set and H a function such that I ⊆
domH. We define the infinite Cartesian product∏
i∈I

H(i) = { f | f is a function with domain I and (∀ i ∈ I)f(i) ∈ H(i) }

Remark. The members of
∏

i∈I H(i) are I-tuples (functions with domain I)
for which the ith coordinate is in H(i). In other words, the members are all
the functions from I into

⋃
i∈I H(i) and hence are members of I(∪i∈IH(i)).

Thus we can construct the infinite Cartesian product by applying a suitable
subset axiom to I(∪i∈IH(i)).

Example 3.39. Let H be a function and A a set such that H(i) = A for all
i ∈ I. Then

∏
i∈I H(i) = IA.

Example 3.40. Consider the index set ω = { 0, 1, 2, . . . }. Then
∏

i∈I H(i)
consists of ω-sequences that have for their ith term some member of H(i).

Remark. If any H(i) is empty then obviously the product
∏

i∈I H(i) must be
empty. Conversely, if H(i) 6= ∅ for all i ∈ I, it does not necessarily follow
that

∏
i∈I 6= ∅. In order to obtain a member of f of the product, we need

to select some members from each H(i) and set f(i) equal to the selected
element. This requires the axiom of choice.

Axiom 3.41. Axiom of Choice (second form)
Let I be any set and H any function with domain I. If H(i) 6= ∅ for all
i ∈ I then

∏
i∈I H(i) 6= ∅.

Theorem 3.42. The first form of the Axiom of Choice (Axiom 3.30) is
equivalent to the second form (Axiom 3.41).

Proof.

=⇒ : Assume the first form of the axiom. Let I be an indexing set
and H a function such that domH = I and H(i) 6= ∅. Define a relation
R ⊆ I ×

⋃
i∈I H(i) by

〈i, x〉 ∈ R ⇐⇒ x ∈ H(i)
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We first note that R is non-empty. Indeed for all i ∈ I, i ∈ domR as H(i) is
non-empty. By the first form of the axiom of choice, there exists a function
G ⊆ R such that domG = domR = I. Hence for all 〈i, G(i)〉 ∈ G we have
that 〈i, G(i)〉 ∈ R. By the definition of R, it follows that G(i) ∈ H(i) whence
we see that G ∈

∏
i∈I H(i). Hence

∏
i∈I H(i) is non-empty.

⇐= : Now assume the second form of the axiom. Let R be any relation.
We need to exhibit a function G ⊆ R such that domG = domR. Denote
domR = I and define the function

H : I → P(ranR)

i 7→ {x ∈ ranR | iRx }

It is easy to see that H is a function with domain I. We first note that
H(i) 6= ∅ for all i ∈ I. Thus by the second form of the axiom of choice, we
have that

∏
i∈I H(i) 6= ∅. Now choose G ∈

∏
i∈I H(i). By the definition of

the infinite product, domG = I and for all i ∈ I, G(i) ∈ H(i). Now take
〈i, G(i)〉 ∈ G. We have that G(i) ∈ H(i) ⊆ ranR whence it follows that
〈i, G(i)〉 ∈ R. Hence G ⊆ R.

3.6 Equivalence Relations

Definition 3.43. Let R be a relation. We say that R is a binary relation on
a set A if R ⊆ A× A.

Definition 3.44. Let R be a binary relation on a set A. We say that R is

1. reflexive on A if xRx for all x ∈ A

2. symmetric if whenever xRy then yRx

3. transitive if whenever xRy and yRz then xRz

Definition 3.45. Let R be a binary relation on a set A. We say that R is an
equivalence relation on A if R is reflexive on A, symmetric and transitive.

Theorem 3.46. Let R be a symmetric and transitive relation. Then R is
an equivalence relation on fldR.
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Proof. It is trivial that a relation R is a binary relation on its field. Indeed

R ⊆ domR× ranR ⊆ fldR× fldR

We must now show that R is reflexive on fldR. Let x ∈ fldR. Without
loss of generality, we may assume that x ∈ domR. Then

x ∈ domR ⇐⇒ xRy

=⇒ xRy ∧ yRx
=⇒ xRx

where in the first line we used the definition of the relation R. In the second
line we used symmetry and in the last line we used transitivity.

Definition 3.47. We define the set [x]R by

[x]R = { t | xRt }

If R is an equivalence relation and x ∈ fldR then [x]R is referred to as the
equivalence class of x (modulo R)

Remark. Obviously, [x]R ⊆ ranR and thus such a set can be constructed
by the application of a suitable subset axiom to ranR. Furthermore, we can
contruct a set of equivalence classes since such a set is included in P(ranR).

Lemma 3.48. Let R be an equivalence relation on a set A and let x, y ∈ A.
Then

[x]R = [y]R ⇐⇒ xRy

Proof.

=⇒ : Assume that [x]R = [y]R. We need to show that xRy. Since R is
reflexive, we have that y ∈ [y]R. Hence, it follows that y ∈ [x]R. But by the
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definition of the equivalence class, we have that xRy.

⇐= : Now assume that xRy. We need to show that [x]R = [y]R. Let
t ∈ [x]R. We show that t ∈ [y]R. We have that

t ∈ [x]R ⇐⇒ xRt (definition)

⇐⇒ xRt ∧ xRy (assumption)

⇐⇒ tRx ∧ xRy (reflexivity)

⇐⇒ tRy (transitivity)

⇐⇒ yRt (reflexvity)

⇐⇒ t ∈ [y]R

Hence [y]R ⊆ [x]R. Now since R is symmetric, we have that yRx and we can
reverse x and y in the above argument to obtain [x]R ⊆ [y]R.

Definition 3.49. Let I be an index set and {Ai}i∈I a collection of subsets
of A. We say that the sets in X are exhaustive if each element of A is in
some Ai.

Definition 3.50. Let A be a set. We say that a set Π is a partition of A
if Π consists of non-empty subsets that are disjoint and exhaustive.

Theorem 3.51. Let R be an equivalence relation on A. Then the set

ΠA = { [x]R | x ∈ A }

is a partition of A.

Proof. We need to show that ΠA consists of non-empty subsets of A that are
disjoint and exhaustive. Since R is an equivalence relation, it is reflexive.
Hence given any x ∈ A, we have that xRx and thus x ∈ [x]R. Thus each
equivalence class is a non-empty subset of A and in particular, the collection
is exhaustive.
Now let [x]R, [y]R ∈ ΠA and suppose that they contain a common element t.
We have that xRt and yRt. Since R is an equivalence relation, it is transitive
and thus xRy. Now by Lemma 3.48, we must have that [x]R = [y]R. Hence
the elements of ΠA are all disjoint.
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Definition 3.52. Let R be an equivalence relation on a set A. We define
the quotient set A modulo R A/R to be

A/R = { [x]R | x ∈ A }

Furthermore, we define the natural map (or canonical map) ϕ(x) by

ϕ : A→ A/R

x 7→ [x]R

Example 3.53. Let ω = { 0, 1, 2, . . . }. Consider the binary relation ∼ on ω

m ∼ n ⇐⇒ m− n is divisible by six

Then ∼ is an equivalence relation on ω. The quotient set ω/ ∼ consists of
the following equivalence classes

[0]∼, [1]∼, [2]∼, [3]∼, [4]∼, [5]∼

Example 3.54. Let F : A → B be a function and define a binary relation
∼ on A by

x ∼ y ⇐⇒ F (x) = F (y)

Then ∼ is an equivalence relation on A. Furthermore, there exists a unique
injective function F̂ : A/ ∼→ B such that F = F̂ ◦ϕ where ϕ is understood to
be the natural map from A into A/ ∼. This is demonstrated by the following
diagram:

A/ ∼

A B

F̂ϕ

F

The value of F̂ at a particular equivalence class is the common value of F at
the members of the equivalence class.

Definition 3.55. Let F : A → A be a function and R a binary relation on
A. We say that F is compatible with R if for all x, y ∈ A we have

xRy =⇒ F (x)RF (y)
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Theorem 3.56. Let R be an equivalence relation on A and F : A → A
a function. If F is compatible with R then there exists a unique function
F̂ : A/R→ A/R such that

F̂ ([x]R) = [F (x)]R for all x ∈ A (3.1)

If F is not compatible with R then no such F̂ can exist.

Proof. First suppose that F is not compatible with R. We show that there
cannot exist a function F̂ satisfying Equation 3.1. By the definition of in-
compatiblity, there exists x, y ∈ A such that xRy but not F (x)RF (y). Ap-
plying Lemma 3.48, we see that [x]R = [y]R but [F (x)]R 6= [F (y)]R. Now
in order for Equation 3.1 to hold, we require that F̂ ([x]R) = [F (x)]R and
F̂ ([y]R) = [F (y)]R. But the left hand sides of these equations coincide yet
the right hand sides do not. Hence there cannot exist such a function F̂ .
Now assume that F is compatible with R. We first observe that Equation
3.1 implies that the ordered pair 〈[x]R, [F (x)]R〉 ∈ F̂ . Hence we shall try and
define F̂ as

F̂ = { 〈[x]R, [F (x)]R〉 | x ∈ A }

We must first show that F̂ is a function. Consider the ordered pairs 〈[x]R, [F (x)]R〉 ,
〈[y]R, [F (y)]R〉 ∈ F̂ . We must show that if [x] = [y] then [F (x) = [F (y)]. We
have that

[x] = [y] ⇐⇒ xRy (Lemma 3.48)

=⇒ F (x)RF (y) (compatibility)

⇐⇒ [F (x)] = [F (y)] (Lemma 3.48)

Now, by construction we have that dom F̂ = A/R and ran F̂ = A/R whence
we see that F̂ : A/R→ A/R. Furthermore we can see by definition that for
all x ∈ A, 〈[x]R, [F (x)]R〉 ∈ F̂ and thus Equation 3.1 is satisfied.
It suffices to show that F̂ is the unique function satisfying Equation 3.1.
Suppose G is another function that satisfies such conditions. We have that
G([x]R) = [F (x)]R for all x ∈ A. Obviously, 〈[x]R, [F (x)]R〉 ∈ F̂ ⇐⇒
〈[x]R, [F (x)]R〉 ∈ G and thus G = F̂ .
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3.7 Ordering Relations

Definition 3.57. Let A be a set. A linear ordering on A (or total or-
dering) is a binary relation R on A that satisfies the following conditions:

1. transitivity

2. trichotomy on A. In other words, given any x and y in A then exactly
one of the following holds:

xRy, x = y, yRx

Theorem 3.58. Let R be a linear ordering on A. Then there is no x ∈ A
for which xRx. Furthermore, for distinct x, y ∈ A, either xRy or yRx.

Proof. The theorem follows directly from the fact that R satisfies trichotomy
on A.

Notation 3.59. We shall usually write a linear ordering R as <. For ex-
ample, if xRy we write x < y.



Chapter 4

Natural Numbers

4.1 Inductive Sets

Definition 4.1. Let a be a set. We define the successor of a, a+ to be

a+ = a ∪ { a }

Definition 4.2. Let A be a set. We say that A is closed under successor
if

(∀ a ∈ A)a+ ∈ A

Definition 4.3. Let A be a set. We say that A is inductive if ∅ ∈ A and
it is closed under successor.

Remark. In terms of the successor operation, we can define the first few
natural numbers as follows:

0 = ∅, 1 = ∅+, 2 = ∅++, 3 = ∅+++

Axiom 4.4. Infinity Axiom
There exists an inductive set:

(∃A)[∅ ∈ A ∧ (∀ a ∈ A)a+ ∈ A]

Definition 4.5. A natural number is a set that belongs to every inductive
set.

30
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Theorem 4.6. There is a set whose members are exactly the natural num-
bers.

Proof. Let A be an inductive set, the existence of which is guaranteed by the
infinity axiom. By a subset axiom , there is a set w such that for any x,

x ∈ w ⇐⇒ x ∈ A ∧ x belongs to every other inductive set

⇐⇒ x belongs to every inductive set

Notation 4.7. We denote the set of all natural numbers by ω.

Theorem 4.8. ω is inductive and is a subset of every other inductive set.

Proof. Since ∅ belongs to every inductive set, it follows that ∅ ∈ ω. Now,

a ∈ ω =⇒ a belongs to every inductive set

=⇒ a+ belongs to every inductive set

=⇒ a+ ∈ ω

Hence ω is inductive. It follows that ω is included in every other inductive
set.

Principle 4.9. Inductive Principle for ω
Any inductive subset of ω coincides with ω.

Suppose that we want to prove that, for every natural number n, the
statement P (n) holds. We form the set

T = {n ∈ ω | P (n) }

of natural numbers satisfying P (n). If T is inductive then P (n) is true for
all natural numbers. Such a proof is said to be a proof by induction.

Theorem 4.10. Every natural number except 0 is the successor of some
natural number.

Proof. Let T = {n ∈ ω | n = 0 ∨ (∃ p ∈ ω)n = p+ }. Then 0 = ∅ ∈ T . Ob-
viously if k ∈ T then k+ ∈ T . Hence T is inductive and thus by induction,
T = ω.
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4.2 Peano’s Postulates

Definition 4.11. Let S be a function and A ⊆ domS. A is said to be closed
under S if whenever x ∈ A then S(x) ∈ A.

Definition 4.12. A Peano system is a triple 〈N, s, e〉 consisting of a set
N , a function S : N → N and a member e ∈ N such that the following three
conditions hold:

1. e /∈ ranS

2. S is injective

3. Any subset A of N that contains e and is closed under S equals N itself.

Remark. The last condition in the above definition is referred to as the
Peano induction postulate.

Definition 4.13. Let A be a set. We say that A is transitive if every
member of a member of A is itself a member of A:

x ∈ a ∈ A =⇒ x ∈ A

Remark. The above definition can be reformulated in any of the followng
ways: ⋃

A ⊆ A

a ∈ A =⇒ a ⊆ A

A ⊆ P(A)

Example 4.14. The set A = {∅, { {∅ } } } is not a transitive set. Indeed,
{∅ } ∈ { {∅ } } ∈ A but {∅ } /∈ A.

Example 4.15. The set A = { 0, 1, 5 } is not transitive. Indeed, 4 ∈ 5 ∈ A
but 4 /∈ A.

Theorem 4.16. Let a be a transitive set. Then⋃
a+ = a
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Proof. We have that ⋃
a+ =

⋃
(a ∪ { a })

=
⋃

a ∪
⋃
{ a }

=
⋃

a ∪ a

= a

where in the last step we used the definition of transitivity of a set:
⋃
a ⊆

a.

Theorem 4.17. Every natural number is a transitive set.

Proof. We shall prove the theorem by induction. We first form the set of
natural numbers for which the theorem is true:

T = {n ∈ ω | n is a transitive set }

We have to show that T is an inductive set. Obviously, ∅ = 0 ∈ T . Now let
k ∈ T . By definition, k is transitive. We need to show that k+ ∈ T . By the
previous theorem, we see that ⋃

(k+) = k

⊆ k+

whence k+ ∈ T . Therefore T is inductive and, by the inductive principle,
T = ω.

Notation 4.18. We denote by σ the restriction of the successor operation
to ω:

σ = { 〈n, n+〉 | n ∈ ω }

Theorem 4.19. 〈ω, σ, 0〉 is a Peano system.

Proof. Since ω is an inductive set, we have that 0 ∈ ω and σ : ω → ω. Now,
the Peano induction postulate, as applied to 〈ω, σ, 0〉, states that any subset
A of ω containing 0 and closed under σ equals ω itself. Clearly, this is just
the induction principle for ω. Furthermore, 0 /∈ ran, σ since there does not
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exist a natural number n such that n+ = ∅. It now remains to show that σ
is injective. Suppose m+ = n+. We need to show that m = n. We have that

m+ = n+ =⇒
⋃

(m+) =
⋃

(n+)

=⇒ m = n

where in the last line we have used the fact that m and n are transitive sets
and Theorem 4.16.

Theorem 4.20. The natural numbers are a transitive set.

Proof. We shall prove the theorem by induction. We need to show that
(∀n ∈ ω)n ⊆ ω. We first form the set of natural numbers for which this
holds:

T = {n ∈ ω | n ⊆ ω }

We need to show that T is inductive. Trivially, 0 ∈ T . Let k ∈ T . We must
show that k+ ∈ T . By definition of T , we have that k ⊆ ω and { k } ⊆ ω.
It follows that k+ = k ∪ { k } ∈ ω and thus T is inductive. Hence by the
inductive principle, T = ω.

Theorem 4.21. Recursion theorem on ω
Let A be a set, a ∈ A and F : A→ A a function. Then there exists a unique
function h : ω → A such that

h(0) = a

and for every n ∈ ω,

h(n+) = F (h(n))

Proof. We show that h is the union of many approximating functions. For
the purpose of this proof, we shall call a function v acceptable if domv ⊆
ω, ran v ⊆ A and the following conditions hold:

1. If 0 ∈ domv then v(0) = a

2. If n+ ∈ domv for some natural number n then also n ∈ domv and
v(n+) = F (v(n))
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Now let H denote the collection of all acceptable functions and let h ∈
⋃
H.

We see that

〈n, y〉 ∈ h ⇐⇒ v(n) = y for some acceptable v (4.1)

We claim that h satisfies the demands of the theorem. We shall prove this in
four parts: we show that h is a function, that h is acceptable, that domh = ω
and that h is unique.

Part 1: We must show that h is a function. Let S denote the set of all
natural numbers at which there is no more than one value of h(n):

S = {n ∈ ω | for at most one y, 〈n, y〉 ∈ h }

We show that S is an inductive set. In order to do so, we must first show
that 0 ∈ S. Suppose that 〈0, y1〉 , 〈0, y2〉 ∈ h. Then by the definition of h,
there must exist acceptable functions v1 and v2 such that v1(0) = y1 and
v2(0) = y2. But by the definition of an acceptable function, we see that
y1 = v1(0) = a = v2(0) = y2. Hence 0 ∈ S.
Now let k ∈ S. We need to show that k+ ∈ S. Suppose that 〈k+, y1〉 , 〈k+, y2〉 ∈
h. By the definition of h, there must exist acceptable functions v1 and v2
such that v1(k

+) = y1 and v2(k
+) = y2. Now by the definition of an accept-

able function, we must have that v1(k
+) = F (v1(k)) and v2(k) = F (v2(k)).

But k ∈ S and thus v1(k) = v2(k). It therefore follows that y1 = y2 and S is
inductive. By the induction principle on ω, S = ω and thus h is a function.

Part 2: We now show that h is itself acceptable. It is clear from 4.1 that
domh ⊆ ω and ran h ⊆ A. We now need to show conditions 1 and 2.
Suppose that 0 ∈ domh. Then by the definition of h, there must exist some
acceptable function v such that v(0) = h(0). Since v(0) = a, we have that
h(0) = a.
Now suppose that n+ ∈ domh. There must exist some acceptable v such
that v(n+) = h(n+). Hence we have that n ∈ domv and v(n) = h(n). Then

h(n+) = v(n+) = F (v(n)) = F (h(n))

Part 3: We now have to prove that domh = ω. To this end, we show that
domh is inductive. Obviously, the function { 〈0, a〉 } is acceptable and thus
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0 ∈ domh. Now suppose that k ∈ domh. We must show that k+ ∈ domh.
If k+ /∈ h then consider the function

v = h ∪ { 〈k+, F (h(k))〉 }

We shall show that v is acceptable. Obviously, domv ⊆ ω and ran v ⊆ A.
Obviously condition 1 holds as v(0) = h(0) and h is acceptable. It remains
to check condition 2.
Suppose that n+ ∈ domv for some n ∈ ω and n+ 6= k+ then n+ ∈ domh
and v(n+) = h(n+) = F (h(n)) = F (v(n)). Now suppose that n+ = k+.
Since the successor operation is injective, we must have that n = k. Now, by
assumption, k ∈ domh whence it follow that v(k+) = F (h(k)) = F (v(k)).
We see that v is an acceptable function. But by the definition of h, v ⊆ h
and thus k+ ∈ domh. Hence domh is inductive and thus coincides with ω.

Part 4: It now suffices to show that h is unique. Let h1 and h2 both satisfy
the conclusion of the theorem. Denote S by the set in which both h1 and h2
agree:

S = {n ∈ ω | h1(n) = h2(n) }

We claim that S is inductive. We must first show that 0 ∈ S. We first note
that domh1 = domh2 = ω. Hence 0 ∈ domh1, domh2. By the definition of
an acceptable function, it follows that h1(0) = h2(0) = a and thus 0 ∈ S.
Now assume that k ∈ S. We must show that k+ ∈ S. Since h1 is acceptable,
we have that h1(k

+) = F (h1(k)). But by assumption, h1(k) = h2(k). Thus
F (h1(k)) = F (h2(k)) = h2(k

+). It follows that k+ ∈ S and so S is inductive.
Since S = ω, we have that h1 = h2.

Example 4.22. Let Z be the set of all integers. Then there does not exist
a function h : Z → Z such that for all a ∈ Z, h(a + 1) = h(a)2 + 1. Indeed,
h(a) > h(a− 1) > h(a− 2) > · · · > 0. Recursion on ω relies on there being
a starting point 0. However, Z has no such starting point.

Example 4.23. Let Z be the set of all integers. Consider the function f :
Z→ Z:

F (a) =

{
a+ 1 if a < 0
a if a ≥ 0

Then there are infinitely many functions h : Z → Z such that h(0) = 0 and
for all a ∈ Z, h(a+ 1) = F (h(a)).
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Theorem 4.24. Let 〈N,S, e〉 be a Peano system. Then 〈w, σ, 0〉 is iso-
morphic to 〈N,S, e〉. In other words, there exists a function h mapping ω
bijectively onto N in a way that preserves the successor operation

h(σ(n)) = S(h(n))

and the zero element

h(0) = e

Proof. The recursion theorem implies that there exists a unique function
h : ω → N such that h(0) = e and for all n ∈ ω, h(n+) = S(h(n)). It suffices
to show that h is bijective.
We first show that h is surjective. We claim that ran h = N . To this
end, we shall employ the Peano induction postulate for 〈N,S, e〉. Obviously,
e ∈ ran h. Now fix x ∈ ran h such that x = h(n) for some n ∈ ω. We
have that S(x) ∈ ran h as S(x) = h(n+). Therefore, by the Peano induction
postulate applied to ran h, we have that ran h = N .
We now show that h is injective. Let

T = {n ∈ ω | for every m ∈ ω different from n , h(m) 6= h(n) }
We claim that T is an inductive set. We first show that 0 ∈ T . By Theorem
4.10, we know that any m ∈ ω that does not coincide with 0 must be of the
form p+ for some other p ∈ ω. Furthermore, we have that h(p+) = S(h(p)) 6=
e since e /∈ ranS. Hence h(0) = e 6= h(p+) and thus 0 ∈ T .
Now assume that k ∈ T . We must show that k+ ∈ T . Suppose that h(k+) =
h(m). Then by the preceding result, m 6= 0 and so m = p+ for some p. Thus

S(h(k)) = h(k+) = h(p+) = S(h(p))

But S is an injective function and thus h(k) = h(p). Since k ∈ T , we have
that k = p and hence k+ = p+ = m. It follows that k+ ∈ T and thus
T is inductive. T therefore coincides with all of ω and consequently, h is
injective.

Remark. The equation h(σ(n)) = S(h(n)) implies that h(1) = S(e), h(2) =
S(S(e)), . . . as shown in the following diagram:

0 1 2 3 . . .

e S(e) S(S(e)) S(S(S(e))) . . .

h

σ

h

σ

h

σ

h

σ
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4.3 Arithmetic

Recursion guarantees us the existence of a function Am : ω → ω for all m ∈ ω
satisfying the following conditions:

Am(0) = m

Am(n+) = Am(n)+

for some n ∈ ω.

Definition 4.25. We define the binary operation addition (+) on ω such
that for any m and n in ω,

m+ n = Am(n)

As a relation, this is written as

{ 〈〈m,n〉 , p〉 | m ∈ ω ∧ n ∈ ω ∧ p = Am(n) }

Theorem 4.26. Let m and n be natural numbers. Then

m+ 0 = m (A1)

m+ n+ = (m+ n)+ (A2)

Let n,m ∈ ω. Recursion also guarantees the existence of a function
Mm : ω → ω such that

Mm(0) = 0

Mm(n+) = Mm(n) +m

Definition 4.27. We define the binary operation (multiplication) (·) on ω
such that for any m and n in ω,

m · n = Mm(n)



CHAPTER 4. NATURAL NUMBERS 39

Example 4.28. 2 + 2 = 4:

2 + 0 = 2 by (A1)

2 + 1 = 2 + 0+

= (2 + 0)+ by (A2)

= 2+

= 3

2 + 2 = 2 + 1+

= (2 + 1)+

= 3+

= 4

Theorem 4.29. The following identities hold for all natural numbers:

1. Associative law for addition

m+ (n+ p) = (m+ n) + p

2. Commutative law for addition

m+ n = n+m

3. Distributive law

m · (n+ p) = m · n+m · p

4. Associative law for multiplication

m · (n · p) = (m · n) · p

5. Commutative law for multiplication

m · n = n ·m

Proof. We shall prove each part of the theorem by induction.

Part 1: Consider the set

A = { p ∈ ω | m+ (n+ p) = (m+ n) + p }
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We claim that A is an inductive set. It is trivial to see that 0 ∈ A. Now let
k ∈ A. We must show that k+ ∈ A. We have that

m+ (n+ k+) = m+ (n+ k)+ by (A2)

= (m+ (n+ k))+ by (A2)

= ((m+ n) + k)+ by assumption

= (m+ n) + k+ by (A2)

Thus k+ ∈ A and A is an inductive set. It follows that A = ω.

Part 2: We first show that 0 + n = n for all n ∈ ω 1. This is equivalent to
showing that the following set is inductive:

A = {n ∈ ω | 0 + n = n }

Obviously, 0 ∈ A by (A1). Now suppose that k ∈ A. Then

0 + k+ = (0 + k)+ by (A2)

= k+ since k ∈ A

and thus k+ ∈ A so A is inductive.
We must now show that m+ + n = (m + n)+ for all m,n ∈ ω. Fix m ∈ ω
and let

B = {n ∈ ω | m+ + n = (m+ n)+ }

By (A1), 0 ∈ B. Now let k ∈ B. We have that

m+ + k+ = (m+ + k)+ by (A2)

= (m+ k)++ since k ∈ B
= (m+ k+)+ by (A2)

whence it follows that k+ ∈ B and B is inductive.
We are now in a position to prove the commutative law. Let n ∈ ω and

{m ∈ ω | m+ n = n+m }
1Note that this is proving that 0 is a left additive identity. Theorem 4.26 states that 0

is a right additive identity.
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We claim that C is inductive. By the first result, we have that 0 + n = n =
n + 0 and thus 0 ∈ C. Now suppose that k ∈ C. We wish to show that
k+ ∈ C. We have that

k+ + n = (k + n)+ by the second result

= (n+ k)+ since k ∈ C
= n+ k+

and thus k+ ∈ C. Thus C is inductive and coincides with all of ω.

Part 3: Let m,n ∈ ω and

A = { p ∈ ω | m · (n+ p) = m · n+m · p }

We claim that A is an inductive set. We must first show that 0 ∈ A. We
have that

m · (n+ 0) = m · n by (A1)

= m · n+ 0 by (A1)

= m · n+m · 0 by (M1)

Hence 0 ∈ A. Now assume that k ∈ A. We want to show that k+ ∈ A. We
have that

m · (n+ k+) = m · (n+ k)+ by (A2)

= m · (n+ k) +m by (M2)

= (m · n+m · k) +m since k ∈ A
= m · n+ (m · k +m) by Part 1

= m · n+m · k+ by (M2)

and thus k+ ∈ A whence A is inductive.

Part 4: Let m,n ∈ ω and

A = { p ∈ ω | m · (n · p) = (m · n) · p }

We claim that A is an inductive set. We have that m · (n · 0) = m · 0 = 0 by
(M1) and, similarly, (m · n) · 0 = 0. Thus 0 ∈ A. Now assume k ∈ A. We
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need to show that k+ ∈ A. We have that

m · (n · k+) = m · (n · k + n) by (M2)

= m · (n · k) +m · n by Part 3

= (m · n) · k +m · n since k ∈ A
= (m · n) · k+ by (M2)

and thus k+ ∈ A whence A is inductive.

Part 5: We first show that 0 · n = 0 for all n ∈ ω. This is equivalent to
showing that the following set is inductive:

A = {n ∈ ω | 0 · n = 0 }

It follows trivially from (M1) that 0 ∈ A. Now let k ∈ A. We must show
that k+ ∈ A. We have that

0 · k+ = 0 · k + 0 by (M2)

= 0 · k by (A1)

= 0 since k ∈ A

Thus k+ ∈ A and A is inductive.
Fix m ∈ ω. We must now show that m+ · n = m · n+ n. It suffices to prove
that the following set is inductive:

B = {n ∈ ω | m+ · n = m · n+ n }

It follows from (A1) and (M1) that 0 ∈ B. Now let k ∈ B. We have that

m+ · k+ = m+ · k +m+ by (M2)

= m · k + k +m+ since k ∈ B
= m · k + (k +m)+ by (A2)

= m · k + (m+ k)+ by Part 2

= m · k +m+ k+ by (A2)

= m · k+ + k+ by (M2)

Thus k+ ∈ B and B is inductive.
We are now ready to show that m · n = n ·m. It suffices to show that the
following set is inductive:

C = {n ∈ ω | m · n = n ·m }
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We must first show that 0 ∈ C. By (M1), we have that m · 0 = 0. By the
first result of this section, we have that 0 ·m = 0. Hence m · 0 = 0 ·m and
0 ∈ C. Now assume that k ∈ C. We must show that k+ ∈ C. We have that

m · k+ = m · k +m by (M2)

= k ·m+m since k ∈ C
= k+ ·m by the second result

Therefore k+ ∈ C and C is inductive.

4.4 Ordering on ω

Notation 4.30. Let m and n be natural numbers. We use the symbol ∈ to
mean either ∈ or = . We write

m < n ⇐⇒ m ∈ n
m ≤ n ⇐⇒ m ∈ n

Remark. We observe that p ∈ k+ if and only if p ∈ k

Definition 4.31. We define a binary relation ∈ω on ω by

∈ω= { 〈m,n〉 ∈ ω × ω | m ∈ n }

We shall show that ∈ω is a linear ordering relation. In other words, ∈ω is
a transitive relation that satisfies trichotomy on ω.

Lemma 4.32. ∈ω is a transitive relation on ω.

Proof. Let m,n, p be natural numbers such that m ∈ n and n ∈ p. It follows
that since each natural number is a transitive set, we must have that m ∈ p.
Hence ∈ω is a transitive relation.

Lemma 4.33.

Part 1:

1. Let m,n ∈ ω. Then

m ∈ n ⇐⇒ m+ ∈ n+
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2. No natural number is a member of itself

Proof.

=⇒ : First suppose that m ∈ n. Consider the set

T = {n ∈ ω | (∀m ∈ n)m+ ∈ n+ }

We claim that T is inductive. It is vacuously true that 0 ∈ T . Now assume
that k ∈ T . We must show that k+ ∈ T . In other words, whenever m ∈ k+
then m+ ∈ k++.
Given m ∈ k+, we have that either m = k - in which case, m+ = k+ ∈ k++

- or m ∈ k. In the latter case, we have that m+ ∈ k+ ⊆ k++ (since k ∈ T ).
Hence in either case we have that m+ ∈ k++ and this k+ ∈ T . Thus T is
inductive and coincides with ω.

⇐= : Now assume that m+ ∈ n+. Then m ∈ m+ ∈ n. Thus, by the
transitivity of n, we obtain m ∈ n.

Part 2: Consider the set

T = {n ∈ ω | n /∈ n }

We claim that T is inductive. Obviously, 0 ∈ T since nothing is a member
of 0. By Part 1, k /∈ k =⇒ k+ /∈ k+. This T is inductive and coincides with
ω.

Lemma 4.34. Let m ∈ ω. Then 0 ∈ m.

Proof. Consider the set

T = {n ∈ ω | 0 ∈ n }

We claim that T is inductive. Obviously 0 ∈ T as 0 ∈ 0. Now suppose k ∈ T .
We have that 0 ∈ k ⊆ k+. Since k+ is a transitive set, we must have that
0 ∈ k+. Hence T is inductive.

Theorem 4.35. Trichotomy Law for ω
Let m and n be natural numbers. Then exactly one of the following conditions
holds

m ∈ n, m = n, n ∈ m
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Proof. We first note that at most one of the conditions can hold. If m ∈ n
and m = n then m ∈ m which contradicts Lemma 4.33. Also, if m ∈ n ∈ m
then, because m is a transitive set, we again have that m ∈ m. It suffices to
show that at least one holds. Consider the set

T = {n ∈ ω | (∀m ∈ ω) (m ∈ n ∨m = n ∨ n ∈ m }

We claim that T is inductive. It follows from the previous lemma that 0 ∈ T .
Now assume that k ∈ T . We need to show that k+ ∈ T . Consider m ∈ ω.
We have that either m ∈ k - in which case m ∈ k+ or k ∈ m. In the latter
case, k+ ∈ m+ by Lemma 4.33 and so k+ ∈ m. Thus in every case, either
m ∈ k+, k+ = m or k+ ∈ m. Hence k+ ∈ T and T is inductive.

Definition 4.36. Let A and B be sets. We say that A is a proper subset
of B, denoted A ⊂ B, if it is a subset of B that does not coincide with B.

Corollary 4.37. Let n and m be natural numbers. We have that

m ∈ n ⇐⇒ m ⊂ n

m ∈ n ⇐⇒ m ⊆ n

Proof. Since n is a transitive set, we have that m ∈ n =⇒ m ⊆ n. Lemma
4.33 implies that the inclusion must be proper. Conversely, assume that
m ⊂ n. Then m 6= n and n /∈ m. Hence by trichotomy, m ∈ n and we are
done.

Theorem 4.38. Let m,n and p be natural numbers. We have that

m ∈ n ⇐⇒ m+ p ∈ n+ p

If, in addition, p 6= 0 then

m ∈ n ⇐⇒ m · p ∈ n · p

Proof.

Part 1:

=⇒ : Let m ∈ n be natural numbers. Consider the set

A = { p ∈ ω | m+ p ∈ n+ p }
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Obviously, 0 ∈ A. Let k ∈ A. We must show that k+ ∈ A. We have that

k ∈ A =⇒ m+ k ∈ n+ k (4.2)

=⇒ (m+ k)+ ∈ (n+ k)+ by Lemma 4.33

=⇒ m+ k+ ∈ n+ k+ by (A2)

=⇒ k+ ∈ A (4.3)

Hence A is inductive and thus A = ω.

⇐= : Suppose that m+ p ∈ n+ p for all p ∈ ω. Then we cannot have that
m = n (else n+ p ∈ n+ p) nor n ∈ m (else n+ p ∈ m+ p ∈ n+ p). The only
alternative is that m ∈ n.

Part 2:

=⇒ : Let m ∈ n be natural numbers. Consider the set

B = { q ∈ ω | m · q+ ∈ n · q+ } 2

We claim that B is inductive. We can easily see that 0 ∈ B since m · 0+ =
m · 0 +m = m. Now let k ∈ B. We must show that k+ ∈ B. In other words,
we must show that m · k++ ∈ n · k++. We have that

m · k++ = m · k+ +m

∈ n · k+ +m

where we have applied the first part of the theorem to the fact that m · k+ ∈
n · k+. Again applying the first part of the theorem, this time to the fact
that m ∈ n, we see that

n · k+ +m ∈ n · k+ + n

= n · k++

Therefore k+ ∈ B and B is inductive.

Part 2: Now suppose that m · q+ ∈ n · q+ for all q ∈ ω. Then we cannot
have that m = n (else m · q+ ∈ m · q+) nor can we have that n ∈ m (else
m · q+ ∈ n · q+ ∈ m · q+). Hence the only other option is that m ∈ n.

2Recall that for a natural number p 6= 0, there exists some q ∈ ω with q+ = p
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Corollary 4.39. Let m,n and p be natural numbers. Then the following
cancellation laws hold:

m+ p = n+ p =⇒ m = n

m · p = n · p ∧ p 6= 0 =⇒ m = n

Proof.

Part 1: Suppose that m + p = n + p. We cannot have that m ∈ n (else by
the previous theorem we would have that m + p = n + p ∈ m + p) nor can
we have that n ∈ m by similar argumentation. Our only other option is that
m = n.

Part 2: Suppose that m · p = n · p and that p is non-zero. Then we
cannot have that m ∈ n (else by the previous theorem, we would have that
m · p = n · p ∈ m · p) nor can we have that n ∈ m. Hence our only other
option is that m = n.

Theorem 4.40. Well Ordering of ω
Let A ⊆ ω be a non-empty subset of the natural numbers. Then there is some
m ∈ A such that m ∈ n for all n ∈ A.

Proof. Assume that A is a subset of ω without a least element. We claim
that A = ∅. To this end, we shall show that the following set is inductive:

B = {m ∈ ω | no number less than m belongs to A }

It is vacuously true that 0 ∈ B. Now suppose that k ∈ B. Suppose that n is
less than k+. Then either n is less than k - in which case, n /∈ A as k ∈ B) -
or n = k - in which case, n /∈ A lest by trichotomy it be least in A. In both
cases, n is outside of A. Hence k+ ∈ B and B is inductive. It clearly follows
that A = ∅.

Corollary 4.41. There does not exist a function f : ω → ω such that
f(n+) ∈ f(n) for every natural number n.

Proof. If such a function were to exist, ran f would be a non-empty subset
of ω without a least element, contradicting the well ordering of ω.
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Theorem 4.42. Strong Induction Principle for ω
Let A be a subset of ω and assume that for every n ∈ ω

if every numbers less than n is in A, then n ∈ A

Then A = ω

Proof. Suppose that A 6= ω. Then ω\A 6= ∅. By well ordering, it has a least
number, say m. Since m is least in ω\A, all numbers less than m are in A.
But by hypothesis, m ∈ A which contradicts the fact that m ∈ ω\A.

Remark. The well ordering principle provides an alternative to proof by
induction. When showing something is true for every natural number, instead
of forming the set of numbers for which the statement is true, we can form
the set for which the statement is false. We can then show that such a set
has no least element meaning that it must be the empty set.



Chapter 5

Construction of the Real
Numbers

5.1 Integers

Definition 5.1. Define ∼ to be the relation on ω × ω for which

〈m,n〉 ∼ 〈p, q〉 ⇐⇒ m+ q = p+ n

Explicitly, we have that

∼= { 〈〈m,n〉 , 〈p, q〉〉 | m+ q = p+ n }

Theorem 5.2. The relation ∼ is an equivalence relation on ω × ω.

Proof. We must first show that ∼ is reflexive on ω × ω. Consider 〈m,n〉
where m and n are natural numbers. Obviously by the commutativity of
addition, m+ n = n+m and thus 〈m,n〉 ∼ 〈m,n〉. Hence ∼ is reflexive.
We must now show that ∼ is symmetric. Let 〈m,n〉 and 〈p, q〉 be such that
〈m,n〉 ∼ 〈p, q〉. We must show that 〈p, q〉 ∼ 〈m,n〉. By assumption, we have
that m + q = p + n. It is obviously the case that p + n = m + q and thus
〈p, q〉 ∼ 〈m,n〉. Therefore, ∼ is symmetric.
It now suffices to show that ∼ is transitive. Suppose that 〈m,n〉 ∼ 〈p, q〉
and 〈p, q〉 ∼ 〈r, s〉. Then by the definition of the relation, we have that
m+q = n+p and p+s = r+q. Adding these two equations together, we see
that m+ q + p+ s = n+ p+ r + q. Now, by the cancellation law, we obtain
that m + s = r + n which implies that 〈m,n〉 ∼ 〈r, s〉. Thus ∼ is transitive
whence it follows that it is also an equivalence relation.

49
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Definition 5.3. We define the set Z = (ω × ω)/ ∼ as the integers.

Example 5.4. The integer 2Z is the equivalence class

[〈2, 0〉] = { 〈2, 0〉 , 〈3, 1〉 , 〈4, 2〉 , . . . }

The integer −3Z is the equivalence class

[〈0, 3〉] = { 〈0, 3〉 , 〈1, 4〉 , 〈2, 5〉 }

Lemma 5.5. Let m,n,m′, n′, p, q, p′, q′ all be natural numbers. Assume that
〈m,n〉 ∼ 〈m′, n′〉 and 〈p, q〉 ∼ 〈p′, q′〉. Then

〈m+ p, n+ q〉 ∼ 〈m′ + p′, n′ + q′〉

Proof. The proof follows directly from the definition of ∼ and then adding
the two resulting equations.

Definition 5.6. Let a and b be integers. Then we define their addition a+Z b
to be

a+Z b = [〈m+ p, n+ q〉]

where 〈m,n〉 is chosen from a and 〈p, q〉 is chosen from b.

Example 5.7. 2Z +Z (−3Z) = −1Z. We have that

2Z +Z (−3Z) = [〈2, 0〉] +Z [〈0, 3〉]
= [〈2 + 0, 0 + 3〉]
= [〈2, 3〉]
= −1Z

Theorem 5.8. The operation +Z is commutative and associative. In other
words, given any a, b ∈ Z, we have that

a+Z b = b+Z a

(a+Z b) +Z c = a+Z (b+Z c)

Proof. Let a be of the form [〈m,n〉] for some natural numbers m and n.
Similarly, b is of the form [〈p, q〉] and c is of the form [〈r, s〉].
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Part 1:

a+Z b = [〈m,n〉] +Z [〈p, q〉]
= [〈m+ p, n+ q〉] by definition of +Z

= [〈p+m, q + n〉] by commutativity of + on ω

= [〈p, q〉] +Z [〈m,n〉]
= b+Z a

Part 2:

(a+Z b) +Z c = ([〈m,n〉] +Z [〈p, q〉]) +Z [〈r, s〉]
= ([〈m+ p, n+ q〉]) +Z [〈r, s〉] by the definition of +Z

= [〈(m+ p) + r, (n+ q) + s〉] by the definition of +Z

= [〈m+ (p+ r), n+ (q + s)〉] by associativity of + on ω

= [〈m,n〉] +Z ([〈p+ r, q + s〉])
= [〈m,n〉] +Z ([〈p, q〉] +Z [〈r, s〉])
= a+Z (b+Z c)

Theorem 5.9.

1. 0Z is an identity element for +Z:

a+Z 0Z = a

for all a ∈ Z.

2. For any integer a, there exists a unique integer (called an inverse and
denoted −a) b such that

a+Z b = 0Z
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Proof.

Part 1: Suppose that a = [〈m,n〉] where m and n are some natural numbers.

a+Z 0Z = [〈m,n〉] +Z [〈0, 0〉]
= [〈m+ 0, n+ 0〉] by the definition of +Z

= [〈m,n〉] by (A1)

= a

Part 2: Given an integer a, it must be of the form [〈m,n〉] where m and n
are some natural numbers. Take b = [〈n,m〉]. Then

a+Z b = [〈m,n〉] +Z [〈n,m〉]
= [〈m+ n, n+m〉] by the definition of +Z

= [〈m+ n,m+ n〉] by the commutativity of + on ω

= [〈0, 0〉]
= 0Z

To show that additive inverses are unique, suppose that b and b′ are both
additive inverses of a. Then we have that b = b+Z(a+Zb

′) = (b+Za)+Zb
′ = b′

where we have used the associativity of +Z.

Remark. The two previous theorems show that Z with the operation +Z and
the identity element 0Z form an Abelian group

Definition 5.10. Let a and b be two integers. We define the operation of
subtraction (denoted -) on a and b by the following:

b− a = b+Z (−a)

Lemma 5.11. Let m,n,m′, n′, p, q, p′, q′ all be natural numbers. Assume that
〈m,n〉 ∼ 〈m′, n′〉 and 〈p, q〉 ∼ 〈p′, q′〉. Then

〈mp+ nq,mq + np〉 ∼ 〈m′p′ + n′q′,m′q′ + n′p′〉

Proof. By the definition of ∼, we have the following two equations:

m+ n′ = m′ + n (5.1)

p+ q′ = p′ + q (5.2)
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We first multiply Equation (5.1) by p which gives us

mp+ n′p = m′p+ np (5.3)

Next we multiply the reverse of Equation (5.1) by q which gives us

m′q + nq = mq + n′q (5.4)

We now multiply Equation (5.2) by m′ giving us

pm′ + q′m′ = p′m′ + qm′ (5.5)

Finally we multiply the reverse of Equation (5.2) by n′ which gives us

p′n′ + qn′ = pn′ + q′n′ (5.6)

Adding up these four equations, we have

mp+ n′p+m′q + nq + pm′ + q′m′ + p′n′ + qn′ =m′p+ np+mq

+ n′q + p′m′ + qm′ + pn′ + q′n′

We can now apply the cancellation law (and the commutativity of addition
on the natural numbers) to this equation to arrive at

mp+ nq +m′q′ + n′p′ = m′p′ + n′q′ +mq + np

Now applying the definition of ∼, we arrive at the conclusion of the lemma.

Definition 5.12. Let a and b be two integers. We define their multiplication
·Z to be

a ·Z b = [〈mp+ nq,mq + np〉]

where 〈m,n〉 is chosen from a and 〈p, q〉 is chosen from b.

Theorem 5.13. Let a, b and c be integers. Then the following properties
hold:

1. Commutatvity of ·Z:

a ·Z b = b ·Z a
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2. Associativity of ·Z:

(a ·Z b) ·Z c = a ·Z (b ·Z c)

3. Distributivity of ·Z over +Z:

a ·Z (b+Z c) = (a ·Z b) +Z (a ·Z c)

Proof. Assume that a = [〈m,n〉], b = [〈p, q〉] and c = [〈r, s〉].
Part 1:

a ·Z b = [〈m,n〉] ·Z [〈p, q〉]
= [〈mp+ nq,mq + np〉] by the definition of ·Z
= [〈pm+ qn, qm+ pn〉] by the commutativity of · over ω

= [〈pm+ qn, pn+ qm〉] by the commutativity of + over ω

= [〈p, q〉] ·Z [〈m,n〉] by the definition of ·Z
= b ·Z a (5.7)

Part 2:

(a ·Z b) ·Z c = ([〈m,n〉] ·Z [〈p, q〉]) ·Z [〈r, s〉]
= [〈mp+ nq,mq + np〉] ·Z [〈r, s〉]
= [〈(mp+ nq)r + (mq + np)s, (mp+ nq)s+ (mq + np)r〉]
= [〈mpr + nqr +mqs+ nps,mps+ nqs+mqr + npr〉]
= [〈m(pr + qs) + n(qr + ps),m(ps+ qr) + n(qs+ pr)〉]
= [〈m,n〉] ·Z [〈pr + qs, qr + ps〉]
= a ·Z ([〈p, q〉] ·Z [〈r, s〉])
= a ·Z (b ·Z c)

Part 3:

a ·Z (b+Z c) = [〈m,n〉] ·Z [〈p+ r, q + s〉]
= [〈m(p+ r) + n(q + s),m(q + s) + n(p+ r)〉]
= [〈mp+mr + nq + ns,mq +ms+ np+ nr〉]
= [〈(mp+ nq) + (mr + ns), (mq + np) + (ms+ nr)〉]
= [〈mp+ nq,mq + np〉] +Z [〈mr + ns,ms+ nr〉]
= ([〈m,n]〉 ·Z [〈p, q〉]) +Z ([〈m,n〉] ·Z [〈r, s〉])
= a ·Z b+Z a ·Z c
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Theorem 5.14. Let a and b be integers.

1. The integer 1Z is a multiplicative identity element:

a ·Z 1Z = a

2. 0Z/neq1Z

3. If a ·Z b = 0Z then either a = 0Z or b = 0Z

Proof. Let a = [〈m,n〉] and b = [〈p, q〉].

Part 1:

a ·Z 1Z = [〈m,n〉] ·Z [〈1, 0〉]
= [〈m · 1 + n · 0,m · 0 + n · 1〉]
= [〈m,n〉]
= a

Part 2: Obviously, 0 6= 1 in ω and thus 〈0, 0〉 6∼ 〈1, 0〉.

Part 3: Assume that a 6= 0Z and b 6= 0Z. It suffices to show that a ·Z b 6= 0Z.
We have that a ·Z b = [〈mp+ nq,mq + np〉]. Now since a 6= [〈0, 0〉], we must
have that m 6= n and thus, by trichotomy, either m ∈ n or n ∈ m. Similarly,
either p ∈ q or q ∈ p. It thus follows, again by trichotomy, that we cannot
have that mp+ nq = mq + np. Thus a ·Z b 6= 0Z.

Lemma 5.15. Let m,n,m′, n′, p, q, p′, q′ all be natural numbers. Assume that
〈m,n〉 ∼ 〈m′, n′〉 and 〈p, q〉 ∼ 〈p′, q′〉. Then

m+ q ∈ p+ n ⇐⇒ m′ + q′ ∈ p′ + n′

Proof. By assumption, we have the following two equations:

m+ n′ = m′ + n

p+ q′ = p′ + q
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We then have

m+ q ∈ p+ n ⇐⇒ m+ q + n′ + q′ ∈ p+ n+ n′ + q′

by the cancellation law

⇐⇒ m′ + n+ q + q′ ∈ p′ + q + n+ n′

by the two equations above

⇐⇒ m′ + q′ ∈ p′ + n′ by the cancellation law

Definition 5.16. Let a = [〈m,n〉] and b = [〈p, q〉] be integers (where m,n, p
and q are natural numbers). We define an ordering relation <Z by the fol-
lowing:

a <Z b ⇐⇒ m+ q ∈ p+ n

Theorem 5.17. The relation <Z is a linear ordering on the set of integers.

Proof. We must first show that <Z is a transitive relation on Z. Let a =
[〈m,n〉], b = [〈p, q〉] and c = [〈r, s〉] be integers. Then

a <Z b ∧ b <Z c =⇒ m+ q ∈ p+ n ∧ p+ s ∈ r + q

=⇒ m+ q + s ∈ p+ n+ s ∧ p+ s+ n ∈ r + q + n

=⇒ m+ q + s ∈ r + q + n

=⇒ m+ s ∈ r + n

=⇒ a <Z c

We must now show that <Z satisfies trichotomy on Z. To say that exactly
one of the following holds:

a <Z b, a = b, b <Z a

is the same as saying that exactly one of the following holds:

m+ q ∈ p+ n, m+ q = p+ n, p+ n ∈ m+ q

This follows directly from trichotomy of ¡ on ω.

Definition 5.18. An integer b is called positive if 0Z <Z b.
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Remark. It is easy to see that

b <Z 0Z ⇐⇒ 0Z <Z −b

Hence a consequence of trichotomy is that exactly one of the three following
alternatives holds:

b is positive , b is zero , −b is positive

Theorem 5.19. Let a = [〈m,n〉], b = [〈p, q〉] and c = [〈r, s〉] be integers.

1. a <Z b ⇐⇒ a+Z c <Z b+Z c

2. If 0Z <Z c then

a <Z b ⇐⇒ a ·Z c <Z b ·Z c

Proof.

Part 1: By definition of <Z we want to show that

m+ q ∈ p+ n ⇐⇒ m+ r + q + s ∈ p+ r + n+ s

But this follows directly from the cancellation law for natural numbers.

Part 2: The proof is left as an exercise to the reader.

Corollary 5.20. Let a, b and c be integers. Then the cancellation law holds:

a+Z c = b+Z c =⇒ a = b

a ·Z c = b ·Z c ∧ c 6= 0Z =⇒ a = b

Proof. This corollary follows immediately from the previous theorem and the
same argumentation between Theorem 4.38 and Corollary 4.39.

Theorem 5.21. Consider the function E : ω → Z given by

E(n) = [〈n, 0〉]

Then E is an injective mapping between ω and Z and, given any n,m ∈ ω,
satisfies the following properties:
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1. E(m+ n) = E(m) +Z E(n)

2. E(mn) = E(m) ·Z E(n)

3. m ∈ n ⇐⇒ E(m) <Z E(n)

Proof. We first show that E is injective. We have that

E(m) = E(n) ⇐⇒ [〈m, 0〉] = [〈n, 0〉]
⇐⇒ 〈m, 0〉 ∼ 〈n, 0〉
⇐⇒ m+ 0 = n+ 0

⇐⇒ m = n

Part 1:

E(m+ n) = [〈m+ n, 0〉]
= [〈m, 0〉] + [〈n, 0〉]
= E(m) + E(n)

Part 2:

E(mn) = [〈mn, 0〉]
= [〈m, 0〉] ·Z [〈n, 0〉]
= E(m) ·Z E(n)

Part 3:

m ∈ n ⇐⇒ m+ 0 ∈ n+ 0

⇐⇒ [〈m, 0〉] <Z [〈n, 0〉]
⇐⇒ E(m) <Z E(n)

Remark. From now on, we shall streamline our notation by omitting the Z
subscript on +Z, ·Z etc.
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5.2 Rational Numbers

Definition 5.22. Let a and b be integers with b non-zero. We say that the
ordered pair 〈a, b〉 is a fraction. The first component is the numerator
and the second component is the denominator. Let Z′ = Z\ { 0 }. Then
Z× Z′ is the set of all fractions.

Definition 5.23. We define ∼ to be the binary relation on Z×Z′ satisfying
the following:

〈a, b〉 ∼ 〈c, d〉 ⇐⇒ a · d = c · b

where a, b, c and d are integers.

Theorem 5.24. The relation ∼ is an equivalence relation on Z× Z′.

Proof. We first show that ∼ is reflexive on Z× Z′. Let x = 〈a, b〉 ∈ Z× Z′.
We must show that x ∼ x. Indeed, a · b = b · a by commutativity of the
multiplication of integers. Thus ∼ is reflexive on Z× Z′.
We must now show that ∼ is symmetric. Let x = 〈a, b〉 and y = 〈c, d〉. We
must show that x ∼ y ⇐⇒ y ∼ x. We have that

〈a, b〉 ∼ 〈c, d〉 ⇐⇒ a · d = c · b
⇐⇒ c · b = a · d
⇐⇒ 〈c, d〉 ∼ 〈a, b〉

Finally, we show that ∼ is transitive. Let x = 〈a, b〉 , y = 〈c, d〉 and z = 〈e, f〉.
We must show that if x ∼ y and y ∼ z then x ∼ z. We have that

(〈a, b〉 ∼ 〈c, d〉) ∧ (〈c, d〉 ∼ 〈e, f〉) ⇐⇒ (ad = cb) ∧ (cf = ed)

⇐⇒ (adf = cbf) ∧ (cfb = edb)

⇐⇒ (adf = cfb) ∧ (cfb = edb)

⇐⇒ adf = edb

⇐⇒ af = eb

⇐⇒ 〈a, b〉 ∼ 〈e, f〉

Remark. Knowing that ∼ is indeed an equivalence relation on Z×Z′, we now
define the rational numbers Q = (Z× Z′)/ ∼ to be the set of equivalence
classes of fractions.
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Lemma 5.25. Let a, b, a′, b′, c, d, c′, d′ all be integers. Assume that 〈a, b〉 ∼
〈a′, b′〉 and 〈c, d〉 ∼ 〈c′, d′〉. Then

〈ad+ cb, bd〉 ∼ 〈a′d′ + c′b′, b′d′〉

Proof. By the definition of ∼, we have the following two equations:

ab′ = a′b

cd′ = c′d

Multiplying the first equation by dd′ we get

ab′dd′ = a′bdd′

Now multiplying the second equation by bb’ we get

cd′bb′ = c′dbb′

Adding these two equations we get

ab′dd′ + cd′bb′ = a′bdd′ + c′dbb′

Now using the commutativity and distributivity laws of multiplication of
integers, we have

(ad+ cb)b′d′ = (a′d′ + c′b′)bd

And by the definition of ∼, we arrive at

〈ad+ cb, bd〉 ∼ 〈a′d′ + c′b′, b′d′〉

Definition 5.26. Let [〈a, b〉] and [〈c, d〉] be two rational numbers (where a, b, c
and d are integers). Then we define their addition [〈a, b〉] +Q [〈c, d〉] by the
following:

[〈a, b〉] +Q [〈c, d〉] = [〈ad+ cb, bd〉]

Example 5.27. We shall check 2 + 2 = 4 in Q. Let 2Q = [〈2, 1〉] and
4Q = [〈4, 1〉]. Then we have that

2Q +Q 2Q = [〈2, 1〉] +Q +[〈2, 1〉]
= [〈2 + 2, 1〉]
= [〈4, 1〉]
= 4Q
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Theorem 5.28. Let q = [〈a, b〉], r = [〈c, d〉] and s = [〈e, f〉] be rational
numbers. Then the following properties hold:

1. Associativity of +Q:

(q +Q r) +Q s = q +Q (r +Q s)

2. Commutativity of +Q:

r +Q s = s+Q r

3. There exists an additive identity 0Q:

r +Q 0Q = r

4. For any r ∈ Q, there exists an inverse s ∈ Q (denoted -r) such that
r +Q s = 0Q

Proof.

Part 1:

(q +Q r) +Q s = ([〈a, b〉] +Q [〈c, d〉]) +Q [〈e, f〉]
= [〈ad+ cb, bd〉] +Q [〈e, f〉]
= [〈(ad+ cb)f + ebd, bdf〉]
= [〈adf + cbf + ebd, bdf〉]
= [〈adf + b(cf + ed), bdf〉]
= [〈a, b〉] +Q [〈cf + ed, df〉]
= [〈a, b〉] +Q ([〈c, d〉] +Q [〈e, f〉])

Part 2:

r +Q s = [〈c, d〉] +Q [〈e, f〉]
= [〈cf + ed, df〉]
= [〈ed+ cf, fd〉]
= [〈e, f〉] + [〈c, d〉]
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Part 3:

r +Q 0Q = [〈c, d〉] +Q [〈0, 1〉]
= [〈c · 1 + 0 · d, d · 1〉]
= [〈c, d〉]
= r

Part 4: Given r = [〈c, d〉], take s = [〈−c, d〉]. Then we have that

r +Q s = [〈c, d〉] +Q [〈−c, d〉]
= [〈cd− cd, dd〉]
= [〈0, dd〉]
= 0Q

Lemma 5.29. Let a, b, a′b, b′, c, d, c′, d′ be integers. Assume that 〈a, b〉 ∼
〈a′, b′〉 and 〈c, d〉 ∼ 〈c′, d′〉. Then

〈ac, bd〉 ∼ 〈a′c′, b′d′〉

Proof. The proof follows the same argumentation as Lemma 5.25.

Definition 5.30. Let [〈a, b〉] and [〈c, d〉] be two rational numbers (where a, b, c
and d are integers). Then we define their multiplication [〈a, b〉] ·Q [〈c, d〉]
by the following:

[〈a, b〉] +Q [〈c, d〉] = [〈ac, bd〉]

Theorem 5.31. Let p = [〈a, b〉], q = [〈c, d〉] and r = [〈e, f〉] be rational
numbers. Then the following properties hold:

1. Associativity of ·Q:

(p ·Q q) ·Q r = p ·Q (q ·Q r)

2. Commutativity of ·Q:

q ·Q r = r ·Q q
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3. Distributivity of ·Q over +Q:

p ·Q (q +Q r) = (p ·Q q) +Q (p ·Q r)

Proof. The proofs of Part 1 and Part 2 follow the same argumentation as the
proofs for the same properties for +Q.

Part 3:

p ·Q (q +Q r) = [〈a, b〉] ·Q ([〈c, d〉] + [〈e, f〉]
= [〈a, b〉] ·Q [〈cf + ed, df〉]
= [〈a(cf + ed), bdf〉]
= [〈bacf + baed, bbdf〉]
= [〈acbf + aebd, bdbf〉]
= [〈ac, bd〉] +Q [〈ae, bf〉]
= [〈a, b〉] ·Q [〈c, d〉] +Q [〈a, b〉] ·Q [〈e, f〉]

where we have used the fact that 〈i, j〉 ∼ 〈bi, bj〉.

Theorem 5.32. Let r ∈ Q be non-zero. Then there exists a non-zero q ∈ Q
(called the multiplicative inverse of r and denoted r−1) such that r ·Q q =
1Q.

Proof. Given an r ∈ Q of the form r = [〈a, b〉] (where a is a non-zero integer),
take q = [〈b, a〉]. Then obviously, q 6= 0Q and r ·Q q = [〈ab, ab〉] = 1Q.

Corollary 5.33. Let r and s be non-zero rational numbers. Then r ·Q q is
also non-zero.

Proof. Assume that r ·Q q = 0Q. The previous theorem provides guarantees
the existence of rational numbers r−1 and s−1 such that r ·Q r−1 = 1Q and
s ·Q s−1 = 1Q. Therefore, by the laws of commutativity and associativity of
multiplication of rational numbers, we have that

1Q = (r ·Q s) ·Q (r−1 ·Q s−1)
= 0Q ·Q (r−1 ·Q s−1)
= 0Q

which is a contradiction as the multiplicative and additive identities must be
distinct.
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Definition 5.34. Given any two rational numbers s and r, we define the
operation of division ÷ as follows:

r ÷ s = r ·Q s−1

Definition 5.35. Let p = [〈a, b〉] and q = [〈c, d〉] be rational numbers (where
a, b, c and d are integers). We define the ordering relation <Q by the follow-
ing:

p <Q q ⇐⇒ ad < cb

where a, b, c and d are chosen such that the denominators b and d are positive.

Remark. The reason for the above definition is motivated by the following
intuition:

a

b
<
c

d
⇐⇒ ad < cb

However this is only true if both b and d are positive. However, in the context
of set theory, we have that [〈a, b〉] = 〈−a,−b〉 and thus we can always choose
representative rational numbers whose denominators are positive.

Lemma 5.36. Let a, b, a′, b′, c, d, c′, d′ all be integers. Assume that 〈a, b〉 ∼
〈a′, b′〉 and 〈c, d〉 ∼ 〈c′, d′〉. Furthermore, assume that b, b′, d, d′ are all posi-
tive. Then

ad < cb ⇐⇒ a′d′ < c′b′

Proof. The proof follows the same reasoning as the one for Lemma 5.15.

Remark. The previous lemma guarantees that when we test whether or not
r <Q s, it does not matter which fractions with positive denominators we
choose from r and s.

Theorem 5.37. The relation <Q is a linear ordering on Q.

Proof. We first show that <Q is a transitive relation. Let p = [〈a, b〉], q =
[〈c, d〉] and r = [〈e, f〉] be rational numbers (with b, d and f all positive).
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Suppose that p <Q q and q <Q r. We need to show that p <Q r. We have
that

(p <Q q) ∧ (q <Q r) ⇐⇒ ([〈a, b〉] <Q [〈c, d〉]) ∧ ([〈c, d〉] <Q [〈e, f〉])
⇐⇒ (ad < cb) ∧ (cf < ed)

⇐⇒ (fad < fcb) ∧ (bcf < bed)

⇐⇒ (afd < bcf) ∧ (bcf < ebd)

⇐⇒ afd < ebd

⇐⇒ af < eb

⇐⇒ [〈a, b〉] <Q [〈e, f〉]
⇐⇒ p <Q r

we must now show that <Q satisfies trichotomy on Q. Consider the rational
numbers p = [〈a, b〉] and q = [〈c, d〉] (with b and d positive integers). Then
trichotomy on Z implies that exactly one of the following holds:

ad < cb, ad = cb, cb < ad

But this is equivalent to exactly one of the following holding:

p <Q r, p = r, r <Q p

Definition 5.38. Let q be a rational number. We say that q is positive if
0Q <Q q.

Remark. It is easy to see that r <Q 0Q ⇐⇒ 0Q <Q −r. Thus, as a
consequence of trichotomy, we have that exactly one of the three alternatives
holds:

r is positive, r is zero, −r is positive

Theorem 5.39. Let r, s and t be rational numbers. Then

1. r <Q s ⇐⇒ r +Q t <Q s+Q t

2. If t is positive then

r <Q s ⇐⇒ r ·Q t <Q s ·Q t



CHAPTER 5. CONSTRUCTION OF THE REAL NUMBERS 66

Proof. Assume that r = [〈a, b〉], s = [〈c, d〉] and t = [〈e, f〉] where b, d and f
are all positive integers.

Part 1:

r +Q t <Q s+Q t ⇐⇒ [〈a, b〉] +Q [〈e, f〉] <Q [〈c, d〉] +Q [〈e, f〉]
⇐⇒ [〈af + eb, bf〉] <Q [〈cf + ed, df〉]
⇐⇒ (af + eb)df < (cf + ed)bf

⇐⇒ afdf + ebdf < cfbf + edbf

⇐⇒ adff < cbff

⇐⇒ ad < cb

⇐⇒ [〈a, b〉] <Q [〈c, d〉]
⇐⇒ r <Q s

Part 2:

r ·Q t <Q s ·Q t ⇐⇒ [〈a, b〉] ·Q [〈e, f〉] <Q [〈c, d〉] ·Q [〈e, f〉]
⇐⇒ 〈ae, bf〉 <Q 〈ce, df〉
⇐⇒ aedf < cebf

⇐⇒ ad < cb

⇐⇒ [〈a, b〉] <Q [〈c, d〉]
⇐⇒ r <Q s

Theorem 5.40. Let r, s and t be rational numbers. Then the following can-
cellation laws hold:

1. (r +Q t = s+Q t) =⇒ r = s

2. (r ·Q t = s ·Q t) ∧ t 6= 0Q =⇒ r = s

Proof. The proof follows directly by adding −t to both sides of the equation
in Part 1 and multiplying by t−1 on both sides of the equation in Part 2.
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Theorem 5.41. Consider the embedding E : Z→ Q defined by

E(a) = [〈a, 1〉]

Then the following properties are satisfied:

1. E is an injective function

2. E(a+ b) = E(a) +Q E(b)

3. E(ab) = E(a) ·Q E(b)

4. a < b ⇐⇒ E(a) <Q E(b)

Proof.

Part 1:

E(a) = E(b) =⇒ [〈a, 1〉] = [〈b, 1〉]
=⇒ 〈a, 1〉 ∼ 〈b, 1〉
=⇒ a = b

Part 2:

E(a+ b) = [〈a+ b, 1〉]
= [〈a, 1〉] +Q [〈b, 1〉]
= E(a) +Q E(b)

Part 3:

E(ab) = [〈ab, 1〉]
= [〈a, 1〉] ·Q [〈b, 1〉]
= E(a) ·Q E(b)

Part 4:

a < b ⇐⇒ a · 1 < b · 1
⇐⇒ [〈a, 1〉] <Q [〈b, 1〉]
⇐⇒ E(a) <Q E(b)

Remark. From now on, we shall omit the Q subscript on all operations and
assume them to be implicit.
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5.3 Real Numbers

Definition 5.42. A Dedekind cut is a subset x of Q satisfying the following
properties:

1. ∅ 6= x 6= Q

2. x is closed downward. In other words:

q ∈ x ∧ r < q =⇒ r ∈ x

3. x has no largest member

Definition 5.43. We define the set of real numbers R to be the set of all
Dedekind cuts.

Definition 5.44. Let x and y be real numbers. We define the ordering
relation <R on the real numbers by the following:

x <R y ⇐⇒ x ⊂ y

Theorem 5.45. The relation <R is a linear ordering on R.

Proof. We first show that <R is transitive on R. Let x, y and z be real
numbers such that x <R y and y <R z. Then we have that

(x <R y) ∧ (y <R z) ⇐⇒ (x ⊂ y) ∧ (y ⊂ z)

⇐⇒ x ⊂ z

⇐⇒ x <R z

We now show that <R satisfies trichotomy on the real numbers. Let x, y ∈ R.
We need to show that at most one of the following holds:

x ⊂ y, x = y, y ⊂ x

Suppose that x 6⊆ y. We must show that y ⊂ x. Since x 6⊆ y, we may choose
a rational number r ∈ x\y. Let q ∈ y, we need to show that q ∈ x. If r ≤ q
then, since y is closed downward, we have that r ∈ y. But this contradicts
that r ∈ x\y. Hence we must have that q < r. But x is closed downward
and r ∈ x thus q ∈ x.
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Definition 5.46. Let A ⊆ R be a subset. We say that a real number x (not
necessarily a member of A) is an upper bound for A if y ≤R x for all y ∈ A.
In this case, A is said to be bounded. A least upper bound of A is an
upper bound that is less than any other upper bound.

Theorem 5.47. Any bounded non-empty subset of R has a least upper bound
in R.

Proof. Let A be a subset satisfying the conditions of the theorem. We show
that the least upper bound is

⋃
A.

By the definition of
⋃
A, we have that x ⊆

⋃
A for all x ∈ A. Now let z

be any upper bound for A so that x ⊆ z for all x ∈ A. It thus follows that⋃
A ⊆ z.

It remains to show that
⋃
A is in fact a real number. Since A is non-empty,

it is obvious that
⋃
A 6= ∅. Furthermore since

⋃
⊆ z (where z is an upper

bound for A), we must have that
⋃
A 6= Q.

To show that
⋃
A is closed downward, suppose q ∈

⋃
A and that r ≤ q for

some rational numbers q and r. Since q ∈
⋃
A, there must exist some real

number a ∈ A such that q ∈ a. But a is a real number and is thus closed
downward, hence r ∈ a. It thus follows that r ∈ a ⊆

⋃
A and hence

⋃
A is

closed downward.
It remains to show that

⋃
A has no largest element. Suppose the contrary

and that there exists an x ∈
⋃
A such that for all y ∈

⋃
A, y ≤R x. Since

x ∈
⋃
A, there must exist some real number a ∈ A such that x ∈ a. Since

a is a real number, it does not have a largest element. Choose an element
x2 ∈ a that is bigger than x. We have that x2 ∈ a ⊆

⋃
A and thus x2 ∈

⋃
A.

But then x2 is an element of
⋃
A which is larger than x, contradicting the

assumption that x is the largest element of
⋃
A. Hence

⋃
A cannot have a

largest element.

Definition 5.48. Let x and y be two real numbers. We define the operation
of addition +R on the real numbers by the following:

x+R y = { q + r | q ∈ x ∧ r ∈ y }

Lemma 5.49. Let x and y be real numbers. Then their sum z = x +R y is
also a real number.

Proof. It is obvious that z is a non-empty subset of Q. We now show that
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their sum cannot equal all of Q. Choose q′ ∈ Q\x and r′ ∈ Q\y. Then

q ∈ x ∧ r ∈ y =⇒ q < q′ ∧ r < r′

=⇒ q + r < q′ + r′

Hence any member q+ r of z is strictly less than q′+ r′ and thus q′+ r′ /∈ z.
We next show that z is closed downward. Let q + r ∈ z and consider a
rational number p such that p < q + r. Adding −q to both sides, we have
that p + (−q) < r. Since y is closed downward, we have that p + (−q) ∈ y.
Obviously, we can rewrite p = q + (p+ (−q)) where q ∈ x and p+ (−q) ∈ y.
Hence, by definition of z, we must have that p ∈ z.
It remains to show that z has no largest element. Suppose that q + r is the
largest element of z. Since x is a real number, there must exist some rational
number s such that q < s and s ∈ x. By definition of z, we then have that
s+ r ∈ z. We see that

q < s =⇒ q + r < s+ r

which contradicts that q + r is the largest element of z.

Theorem 5.50. Let x, y and z be real numbers. Then the following properties
hold:

1. Associativity of +R:

(x+R y) +R z = x+R (y +R z)

2. Commutativity of +R:

x+R y = y +R x

Proof.

Part 1:

(x+R y) +R z = { s+ r | s ∈ +Ry ∧ r ∈ z }
= { (p+ q) + r | p ∈ x ∧ q ∈ y ∧ r ∈ z }
= { p+ (q + r) | p ∈ x ∧ q ∈ y ∧ r ∈ z }
= { p+ s | p ∈ x ∧ s ∈ y +R z }
= x+R (y +R z)
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Part 2:

x+R y = { p+ q | p ∈ x ∧ q ∈ y }
= { q + p | q ∈ y ∧ p ∈ x }
= y +R x

Definition 5.51. We define the zero element 0R as follows:

0R = { r ∈ Q | r < 0 }

Remark. It is quite easy to see that 0R is a real number. It is indeed non-
empty and does not coincide with Q. It is obviously closed downward and it
has no maximal element as between any two rational numbers, there is always
another rational number.

Theorem 5.52. Let x ∈ R. Then x+R 0R = x

Proof. We need to show that

{ r + s | r ∈ x ∧ s < 0 } = x

⊆: Let p ∈ { r + s | r ∈ x ∧ s < 0 }. We must show that p ∈ x. By defini-
tion, we have that p = r + s where r ∈ x and s < 0. Obviously r + s < r
and, since x is closed downward, we must have that p = r + s ∈ x.

⊇: Let p ∈ x. We must show that p ∈ { r + s | r ∈ x ∧ s < 0 }. Since x
has no largest member, there must exist some rational number r such that
p < r ∈ x. Let s = p+ (−r). Then obviously, s < 0 and p = r + s and thus
p ∈ { r + s | r ∈ x ∧ s < 0 }.

Definition 5.53. Let x be a real number. We define the additive inverse
of x by the following:

−x = { r ∈ Q | (∃ s > r)− s ∈ x }
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Theorem 5.54. Let x ∈ R. Then the following hold:

1. −x ∈ R

2. x+R (−x) = 0R

Proof.

Part 1: We first show that ∅ 6= −x 6= Q. Let t be a rational number such
that t /∈ x. Let r = −t− 1. Then r ∈ x since r < −t and −(−t) /∈ x. Hence
−x 6= ∅. Now take any p ∈ x. We claim that −p /∈ −x. If s > −p then
−s < p ∈ x whence it follows that −s ∈ x (as x is closed downward). Hence
−p /∈ −x and thus −x 6= Q.
we next show that −x is closed downward. Let r ∈ −x and let q be a rational
number such that q < r. Then there must exist an s > r such that −s ∈ x.
Consequently, there exists an s > q such that −s ∈ x and this q ∈ −x.
It remains to show that −x has no largest element. Let r ∈ −x. By definition
of −x, we know that there exists an s > r such that −s /∈ x. We can always
choose another rational p such that s > p > r. Then p ∈ −x and p is larger
then r.

Part 2: By definition, we have that

x+R (−x) = { q + r | q ∈ x ∧ (∃ s > r)− s /∈ x }

We need to show that

{ q ∈ Q | q < 0 } = { q + r | q ∈ x ∧ (∃ s > r)− s /∈ x }

⊆: Let p ∈ 0R. We need to show that p ∈ { q + r | q ∈ x ∧ (∃ s > r)− s /∈ x }.
By definition, we have that p < 0 and thus −p is a positive rational num-
ber. We can of course find some q ∈ x such that q + (−p ÷ 2) /∈ x. Let
s = (p/div2) − q. Then −s 6 inx. We thus have that p = q + (p − q) where
q ∈ x and p− q ∈ −x (p− q < s where s /∈ x). Hence p ∈ x+R (−x).

⊇: Let q+ r ∈ { q + r | q ∈ x ∧ (∃ s > r)− s /∈ x }. We have that r < s and
q < −s. Hence

q + r < (−s) + s = 0

Hence q + r ∈ 0R.
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Corollary 5.55. Let x, y and z be real numbers. Then

x+R z = y +R z =⇒ x+ y

Proof. This follows directly by adding −z to both sides of the equation.

Theorem 5.56. Let x, y and z be real numbers. Then

x <R y ⇐⇒ x+R z < y +R z

Proof.

=⇒ : It is easy to see that

x ≤R y =⇒ x+R z < y +R z

since this is equivalent to the statement that if x ⊆ y then

{ q + s | q ∈ x ∧ s ∈ z } ⊆ { r + s | r ∈ y ∧ s ∈ z }

By the previous corollary, we have that

x 6= y =⇒ x+R z 6= y +R z

⇐= : This part follows directly from the trichotomy of +R

Definition 5.57. Let x be a real number. We define its absolute value |x|
as follows:

|x| = x ∪ −x

In other words, the absolute value is the larger of x and −x.

Remark. It is clear that |x| is always non-negative.

Definition 5.58. Let x and y be real numbers. We define the operation of
multiplication ·R as follows:

• If x and y are non-negative real numbers then

x ·R y = 0R ∪ { rs | 0 ≤ r ∈ x ∧ 0 ≤ s ∈ y }
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• If x and y are both negative real numbers, then

x ·R y = |x| ·R |y|

• If one of x and y is negative and the other is non-negative, then

x ·R y = −(|x| ·R |y|)

Theorem 5.59. Let x, y and z be real numbers. Then the following hold:

1. x ·R y is a real number

2. Multiplication is associative, commutative and distributive over addi-
tion

3. 0R 6= 1R and x ·R 1R = x

4. For non-zero x, there is a non-zero real number y such that x ·R y = 1R

5. Multiplication by a positive number preserves order: If 0R <R z then

x <R y ⇐⇒ x ·R z <R y ·R z

Theorem 5.60. Consider the embedding E : Q→ R given by

E(r) = { q ∈ Q | q < r }

In other words, every rational number r can be realised as a real number by
constructing the set of all rational numbers less than r. Such an embedding
function satisfies the following properties:

1. E is a real number

2. E is an injective function

3. E(r + s) = E(r) +R E(s)

4. E(rs) = E(r) ·R E(s)

5. r < s ⇐⇒ E(r) <R E(s)
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Proof.

Part 1: Fix r ∈ Q. By definition, E(r) is closed downward. Obviously,
∅ 6= E(r) 6= Q as r− 1 ∈ E(r) and r /∈ E(r). E(r) has no largest element as
if q ∈ E(r) then there is a larger rational p such that q < p < r. Therefore
E(r) is a real number.

Part 2: Suppose that r 6= s. We must show that E(r) 6= E(s). If r 6= s then
by trichotomy, one is less than the other. Without loss of generality, we may
assume that r < s. Then r ∈ E(s) whereas r /∈ E(r) hence E(r) 6= E(s).

Part 3: We have that

E(r) +R E(s) = { p+ q | p ∈ E(r) ∧ q ∈ E(s) }
= { p+ q | p < r ∧ q < s }

We need to show that this is equivalent to the following set:

{ t | t < r + s }

⊆: By Theorem 5.39, we have that

p+ q < r + q < r + s

and thus { p+ q | p < r ∧ q < s } ⊆ { t | t < r + s }

⊇: Suppose that t < r + s. Define ε = (r + s − t) ÷ 2. Then ε > 0. Now
let p = r − ε and q = s − ε. Then p < r and q < s and p + q = t. Hence
t ∈ { p+ q | p < r ∧ q < s }.

Part 4: The proof of this part is omitted .

Part 5: If r < s then clearly E(r) ⊆ E(s). Since E is injective, the inclusion
must be proper. The converse follows from trichotomy. If E(r) ⊂ E(s) then
we cannot have r = s nor s < r (lest E(s) < E(r)) so we must have that
r < s.



Chapter 6

Cardinal Numbers and the
Axiom of Choice

6.1 Equinumerosity

Definition 6.1. Let A and B be sets. We say that A is equinumerous to
B, denoted A ≈ B if there exists a bijection from A onto B.

Example 6.2. ω×ω is equinumerous to ω as the following diagram demon-
strates:

6

3 7

1 4 8

0 2 5 9

where the arrows indicate the progression of the natural numbers. This can
also be written as the following function:

J(m,n) =
1

2

[
(m+ n)2 + 3m+ n

]
Example 6.3. Q ≈ ω. The bijection is demonstrated in the diagram below.
In order to ensure that the function is injective, we skip fractions that would
be in the same equivalence class as fractions that have been covered before.

76
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−1
4

0
4

1
4

2
4

3
4

4+
0+

1+

10+

11+

5+

3+

2+

9+

6+ 7+ 8+

12+

14+ 13+

Example 6.4. The open unit interval

(0, 1) = {x ∈ R | 0 < x < 1 }

is equinumerous to R. A bijection f : (0, 1)→ R is given by

f(x) = tan
π(2x− 1)

2

Example 6.5. For any set A, we have that PA ≈A 2. We define a bijection
H : PA →A 2 as follows: Let B be a subset of A. Then H(B) is the
characteristic function of B. In other words, the function fB from A into 2
for which

fB(x) =

{
1 if x ∈ B
0 if x ∈ A\B

Then any function g ∈A 2 is in ranH since

g = H({x ∈ A | g(x) = 1 })

Theorem 6.6. Let A, B and C be sets. Then we have that

1. A ≈ A

2. A ≈ B =⇒ B ≈ A

3. A ≈ B ∧B ≈ C =⇒ A ≈ C
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Proof.

Part 1: This part is trivial as we can just take the identity function (which
is clearly bijective):

f : A→ A

x 7→ x

Part 2: We have that A ≈ B and thus, by definition, there must exist
some bijection f : A→ B. By results from Chapter 3, we can always find a
bijective inverse f−1 : B → A of f and thus B ≈ A.

Part 3: We have that A ≈ B and B ≈ C. By definition, there must exist
bijections f : A → B and g : B → C. Consider the composition function
h = g ◦ f . Then by results from Chapter 3, h is a bijection from A into C
whence A ≈ C.

Remark. Despite the fact that ≈ satisfies the conditions for an equivalence
relation, we cannot label it as such. The reason for this is that it concerns
all sets and, as we know, we cannot form the set of all sets.

Theorem 6.7.

1. The set ω is not equinumerous to the set R of all real numbers.

2. No set is equinumerous to its power set.

Proof. Part 1: Fix a function f : ω → R. We claim that there exists a real
number z ∈ R such that z /∈ ran f . We can write the values f takes in the
following array:

f(0) = k0.d01d02d03 . . .

f(1) = k1.d11d12d13 . . .

f(2) = k2.d21d22d23 . . .

...

f(n) = kn.dn1dn2dn3 . . . dnn+1 . . .
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where kn is the integer part of f(n) and the dni are the decimals of f(n) with
i ≥ 1.
We now define the real number z as follows:

z = 0.d1d2d3 . . . dn+1

where dn+1 = 1 if dnn+1 6= 1 else dn+1 = 2. By this definition, we can see
that

dn+1 6= dnn+1

for all n ≥ 0. It thus follows that z cannot be in the array above whence
z /∈ ran f
Part 2: Fix g : A → PA. we claim that there exists a subset B of A such
that B /∈ ran g. Let

B = {x ∈ A | x /∈ g(x) }

Then, obviously, B ⊆ A but given x ∈ A,

x ∈ B ⇐⇒ x /∈ g(x)

Hence B 6= g(x).

6.2 Finite Sets

Definition 6.8. Let A be a set. We say that A is finite if A ≈ n for some
n ∈ ω. If not then we say that A is infinite.

Example 6.9. It follows trivially from the definition that any natural number
is itself finite.

Theorem 6.10. (Pigeonhole Principle)
No natural number is equinumerous to a proper subset of itself.

Proof. Fix a natural number n ∈ ω and let f be an injective function from
n into n. We show that ran f necessarily coincides with n (and not a proper
subset of n). Define

T = {n ∈ ω | any injective function from n into n has range n }
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We claim that T is inductive. Obviously 0 ∈ T as the only function from 0
into 0 is ∅ and its range is 0. Now suppose that k ∈ T . We must show that
k+ ∈ T . Suppose f is an injective function from k+ into k+. It suffices to
show that ran f = k+. Now consider f |k. This restriction maps the set k
injectively into k+. We have the following two cases:

Case 1: We have the case where the set k is closed under f . In that case
f |k is an injective map between k and k. Now since k ∈ T , we can conclude
that ran(f |k) = k. Now since f is injective, the only possible value for f(k)
is k itself. Hence ran f = k ∪ { k } = k+.

Case 2: We have the case where f(p) = k for some p < k. If this is the case
then we interchange two values of the function. Define the function f̂ by the
following:

f̂(x) =


f(k) if x = p
f(p) if x = k
f(x) if otherwise

Then f̂ maps k+ injectively into k+ and the set k is closed under f̂ . Then
by the first case, ran f̂ = k+. But ran f̂ = ran f . Hence in either case,
ran f = k+. It follows that T is inductive whence T = ω.

Remark. The previous theorem essentially implies that if n objects are placed
into fewer than n pigeonholes then there most be some pigeonhole that receives
more than one object.

Corollary 6.11. No finite set is equinumerous to a proper subset of itself.

Proof. Fix a finite set A and let g be the bijection between A and some
natural number n. Suppose that there exists a bijection g between A and
some proper subset of A. Now consider the composition map g ◦ f ◦ g−1.
This composition maps n into n and is bijective. Furthermore, its range
is C where C is some proper subset of n. Then n is equinumerous to C,
contradicting the pigeonhole principle.

Corollary 6.12.

1. Any set that is equinumerous to a proper subset of itself is infinite.

2. The set ω is infinite.
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Proof.

Part 1: The proof of this part follows directly from the contrapositive of
the previous corollary.

Part 2: Consider the function σ whose value at each number n is n+. Then
σ maps ω bijectively into ω\ { 0 }. Hence by Part 1, ω is infinite.

Corollary 6.13. Any finite set is necessarily equinumerous to a unique nat-
ural number.

Proof. Fix a finite set A. Suppose that A ≈ m and A ≈ n for distinct natural
numbers m and n. By trichotomy, we must either have that m = n or that
one is a proper subset of the other. But the latter case is impossible since
m ≈ n. Hence m = n.

Definition 6.14. Let A be a finite set where A ≈ n for some natural number
n (where the uniqueness of n is guaranteed by the previous corollary). Then
n is said to be the cardinal number of A, denoted A.

Example 6.15. Let n be a natural number. Then |n| = n.

Example 6.16. Suppose a, b, c and d are all distinct objects. Then |{ a, b, c, d }| =
4.

Remark. We leave a rigorous definition of |A| to Chapter 7. For now, we
shall assume the following properties:

• Let A and B be sets. Then

|A| = |B| ⇐⇒ A ≈ B

• For a finite set A, |A| is the natural number n for which A ≈ n.

The cardinality for infinite sets is not yet defined. For now, we shall define
the cardinality of ω by

|ω| = ℵ0

Lemma 6.17. Let C be a proper subset of a natural number n. Then C ≈ m
for some m less than n.
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Proof. Consider the set

T = {n ∈ ω | any proper subset of n is equinumerous to a member of n }

We claim that T is inductive. 0 ∈ T vacuously as it has no proper subsets.
Suppose that k ∈ T . We must show that k+ ∈ T . Consider a proper subset
C of k+. We have three cases.

Case 1: C = k. In this case, C ≈ k ∈ k+.

Case 2: C ⊂ k. Then since k ∈ T , we have that C ≈ m where m ∈ k ∈ k+.

Case 3: Otherwise, k ∈ C. Then C = (C ∩ k) ∪ { k } and C ∩ k is a proper
subset of k. Since k ∈ T , there is a an m ∈ k such that C ∩ k ≈ m. Let f
be the bijection between them. Then f ∪ { 〈k,m〉 } is a bijection between C
and m+. Since m ∈ k, we have that m+ ∈ k+. Hence, C ≈ m+ ∈ k+ and
k+ ∈ T .

Hence T is inductive and coincides with ω.

Corollary 6.18. Any subset of a finite set is finite.

Proof. Consider A ⊆ B where B is a finite set. Let f be a bijection between
B and n where n is a natural number. Then A ≈ f JAK ⊆ n and, by the
previous lemma, f JAK ≈ m for some m ∈ n. Hence A ≈ m ∈ ω.

6.3 Cardinal Arithmetic

Definition 6.19. Let κ and λ be cardinal numbers. Then

• κ + λ = |K ∪ L| where K and L are disjoint sets of cardinality κ and
λ respectively.

• κ · λ = |K × L| where K and L are any sets of cardinality κ and λ
respectively

• κλ =
∣∣LK∣∣ where K and L are any sets of cardinality κ and λ
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Theorem 6.20. Assume that K1 ≈ K2 and L1 ≈ L2. Then

1. If K1 ∩ L1 = K2 ∩ L2 = ∅ then K1 ∪K2 ≈ K2 ∪ L2

2. K1 × L1 ≈ K2 × L2

3. (L1)K1 ≈(L2) K2

Proof.

Part 1: Since K1 ≈ K2 there exists a bijection f between K1 and K2. Since
L1 ≈ L2, there exists a bijection g between L1 and L2. Now consider the
surjective relation

h(x) =

{
f(x) if x ∈ K1

g(x) if x ∈ L1

which maps K1 ∪ L1 onto K2 ∪ L2. Now since K1 ∩ L1 = ∅, h is guaranteed
to be a function. Since K2 ∩ L2 = ∅, h is guaranteed to be injective. Hence
h is a bijection between K1 ∪ L1 and K2 ∪ L2 whence K1 ∪ L1 ≈ K2 ∪ L2.

Part 2: Let x ∈ K1 and y ∈ L1. Consider the function

h(〈x, y〉) = 〈f(x), g(y)〉

Then h is a bijection between K1 × L1 and K2 × L2.

Part 3: First consider the following diagram:

L2 K2

L1 K1

H(j)

g−1

j

f

It is easy to see that H(j) is a function from L2 to K2 (independent of the
choice of j). Consider j and j′ such that j 6= j′. In other words, there exists
some t ∈ L1 such that j(t) 6= j′(t). Then we have that

H(j)(g(t)) = f(j(g−1(g(t)))) = f(j(t)) 6= f(j′(t)) = f(j′(g−1(g(t)))) = H(j′)(g(t))

where we have used the fact that f is an injective function. Hence we see
that H(j) 6= H(j′) (as is evidenced by their differing action on g(t)) and thus
H(j) is injective.
We now show that H(j) is a surjective function. Consider any function
d ∈ L2K2. Then d = H(j) where j = f−1 ◦ d ◦ g.



CHAPTER 6. CARDINAL NUMBERS AND THE AXIOM OF CHOICE84

Example 6.21.

1. Let m and n be natural numbers. Then

m · n = |m× n| and mn = |nm|

2. Let n be a natural number. Then

• n+ ℵ0 = ℵ0
• n · ℵ0 = ℵ0 unless n = 0

• ℵ0 + ℵ0 = ℵ0
• ℵ0 · ℵ0

3. Let κ be a cardinal number. Then

• κ+ 0 = κ

• κ · 0 = 0

• κ · 1 = κ

• κ0 = 1

• 0κ = 0 for non-zero κ

4. Let A be a set. Then |PA| = 2|A|

5. By Cantor’s Theorem and the preceeding example, ℵ0 6= 2ℵ0

Theorem 6.22. Let κ, λ and µ be cardinal numbers. Then

1. κ+ λ = λ+ κ

2. κ · λ = λ · κ

3. κ+ (λ+ µ) = (κ+ λ) + µ

4. κ · (λ+ µ) = (κ · λ) · µ

5. κ(λ+ µ) = κ · λ+ κ · µ

6. κλ+µ = κλ · κµ

7. (κ · λ)µ = κµ · λµ
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8. (κλ)µ = κλ cotµ

Proof. Consider sets K,L and M with |K| = κ, |L| = λ and |M | = µ. For
convenience, we choose them in such a way that any two are disjoint. Then
each of the equations reduces to a corresponding statement about equinu-
merous sets:

Part 1: We have that κ+λ = |K ∪ L| and λ+κ = |L ∪K|. Hence we must
show that K ∪ L ≈ L ∪K. Consider the function f : K ∪ L→ L ∪K given
by f : x 7→ x (in other words, the identity function). Then f is a bijection
between the two sets.

Part 2: We have that κ·λ = |K × L| and λ·κ = |L×K|. We must therefore
show that K × L ≈ L×K. Consider the function

f : K × L→ L×K
〈x, y〉 7→ 〈y, x〉

Then f is a bijection.

Part 3: The proof of this part follows directly from the associativity of set
union and the use of the identity bijection.

Part 4: The proof of this part follows similar argumentation as that of Part
2.

Part 5: We have that κ(λ + µ) = |K × (L ∪M)| and κ · λ + κ · µ =
|(K × L) ∪ (K ×M)|. Hence we must show that K × (L ∪M) ≈ (K × L) ∪
(K ×M). Consider the function

f : K × (L ∪M)→ (K × L) ∪ (K ×M)

〈x, y〉 7→ 〈x, y〉

Then f is a bijection.

Part 6: We have that κλ+µ =
∣∣(L∪M)K

∣∣ and κλ · κµ =
∣∣LK × MK

∣∣. Hence

we must show that (L∪M)K ≈ LK × MK. Consider the following function

h : (L∪M)K → LK × MK

g 7→ 〈g|L, g|M〉

We claim that h is a bijection. We first show that h is injective. Let h(g) =
h(g′). Then 〈g|L, g|M〉 = 〈g′|L, g′|M〉. We know that ordered pairs are equal
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if and only if their coordinates are equal. Thus we have that g|L = g′|L and
g|M = g′|M . Since L and M are disjoint, the restrictions of any function on
L ∪M are disjoint on L and M . It thus follows that g = g′.
We now show that h is surjective. Let 〈a, b〉 ∈ LK×MK where a is a function
on L and b is a function on m. We must exhibit a function c ∈ (L∪M)K such
that h(c) = 〈a, b〉. Consider c = a ∪ b. Then h(c) = 〈c|L, c|M〉 = 〈a, b〉 as
required.

Part 7: We have that (κ·λ)µ =
∣∣M(K × L)

∣∣ and κµ·λµ =
∣∣MK × ML

∣∣. Hence
we must show that M(K × L) ≈ MK × ML. Let f ∈ M(K × L). Consider
the ordered pair 〈f, g〉 ∈ MK ×ML. Suppose that for any m ∈M, f(m) = k
and g(m) = l for some k ∈ K and l ∈ L. Define H(〈f, g〉) to be the
function whose value at m is 〈k, l〉. We claim that H is a bijection between
A = MK × ML and B = M(K × L).
We first show that H is injective. Let 〈f, g〉 and 〈f ′, g′〉 be ordered pairs in
A. Choose m ∈ M such that f(m) 6= f ′(m) and g(m) 6= g′(m). Then we
have that

H(〈f, g〉)(m) = 〈m, 〈f(m), g(m)〉〉 6= 〈m, 〈f ′(m), g′(m)〉〉 = H(〈f ′, g′〉)(m)

In other words, 〈f, g〉 6= 〈f ′, g′〉 and thus H is injective.
We now show that H is surjective. Let b ∈ B. We need to exhibit an ordered
pair a ∈ A such that H(a) = b. We know that b is a function that maps an
element m ∈M to an ordered pair 〈k, l〉 ∈ K×L. With this information, we
can define the ordered pair a = 〈f, g〉 such that f(m) = k and g(m) = l. We
can see that a ∈ A. Indeed, f ∈ MK and g ∈ LK and thus a = 〈f, g〉 ∈ A.
Hence H is surjective.

Part 8: We have that (κλ)µ =
∣∣M(Lk)

∣∣ and κλ·µ =
∣∣(L×M)K

∣∣. Hence we must

show that M(Lk) ≈ (L×M)K. Let f ∈ M(Lk). Consider the function H(f)
whose value at 〈l,m〉 equals to the value of the function f(m) at l. We claim
that H is a bijection between A = M(Lk) and B = (L×M)K.
We first show that H is a bijection. Let f 6= g be functions in A. Then
for some m, the functions f(m) 6= g(m). Therefore, for some l, f(m)(l) 6=
g(m)(l). Hence

H(f)(l,m) = f(m)(l) 6= g(m)(l) = H(g)(l,m)

whence H(f) 6= H(g).
We now show that H is surjective. Consider any j ∈ B. Then j = H(f)
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where, for some m ∈M , f(m) is the function whose value at l ∈ L is j(l,m).

Theorem 6.23. Let m and n be finite cardinal numbers. Then

1. m+ n = m+ω n

2. m · n = m ·ω n

3. mn = mn

where the operations on the right hand side is understood to be the operations
introduced on the natural numbers in Chapter 4 and the operations on the
left hand side are the operations of cardinal arithmetic.

Proof. We first claim that the following identities hold (for any finite cardi-
nals κ and λ): (they are either trivial or follow directly from the previous
theorem)

κ+ 0 = κ (a1)

κ+ (λ+ 1) = (κ+ λ) + 1 (a2)

κ · 0 = 0 (m1)

κ · (λ+ 1) = κ · λ+ κ (a2)

κ0 = 1 (e1)

κλ+1 = κλ · κ (e2)

Now let n be a finite cardinal. We claim that n+ 1 = n+. We have that

n+ 1 = |n ∪ {n }| =
∣∣n+
∣∣ = n+

as required. We now define the set

T = {n ∈ ω | m+ n = m+ω n }

for some fixed m ∈ ω. We claim that T is inductive. Then 0 ∈ T since
n+ 0 = n = n+ω 0 by (a1) and (A1). Now let k ∈ T . We have that

m+ k+ = m+ (k + 1)

= (m+ k) + 1 by (a2)

= (m+ω k) + 1 since k ∈ T
= (m+ω k)+

= (m+ω k
+) by (A2)
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and thus k+ ∈ T whence T is inductive and T = ω. The argumentation is
exactly the same for multiplication and exponentiation.

Corollary 6.24. Let A and B be finite sets. Then A∪B,A×B and BA are
also finite.

Proof. This follows directly by converting cardinal arithmetic to that of the
natural numbers.

6.4 Ordering Cardinal Numbers

Definition 6.25. Let A and B be sets. We say that A is dominated by B,
denoted A � B, if there exists an injective function from A into B.

Example 6.26. Let A be a set. Then it follows trivially that A � A by
considering the bijective identity map betweeen A and itself.

Example 6.27. Let B be a set and A ⊂ B be a subset. Then A � B since
the identity function maps A bijectively into B. More generally, We have
that A � B if A is equinumerous to some subset of B.

Definition 6.28. Let A and B be sets. Then we define the ordering relation
≤ on their cardinalities as follows:

|A| ≤ |B| ⇐⇒ A � B

Lemma 6.29. Let K,K ′, L, L′ be sets. Suppose that κ = |K| = |K ′| and
λ = |L| = |L′|. Then

K � L ⇐⇒ K ′ � L′

Proof. We first note that K ≈ K ′ and L ≈ L′ since their cardinalities are
equal. Hence there exist bijections between K and K ′ and between L and
L′. Since K � L, there is an injective map from K into L. Composing these
three functions, we get an injective map from K ′ into L′.

Definition 6.30. Let κ and λ be cardinals. We define the relation < on
these numbers as follows:

κ < λ ⇐⇒ κ ≤ λ ∧ κ 6= λ

In terms of sets, this is equivalent to

|K| < |L| ⇐⇒ K � L ∧K 6= L
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Example 6.31. 1. Let A ⊆ B. Then |A| ≤ |B|. Conversely, whenever
κ < λ, then there exists sets K ⊆ L with |K| = κ and |L| = λ.

2. Let K be a cardinal. We have that 0 ≤ κ.

3. Let n be a finite cardinal. We have that n < ℵ0. For any two finite
cardinals m and n, we have that

m ∈ n =⇒ m ⊆ n =⇒ m ≤ n

In addition, the converse also holds. Indeed if m ≤ n then m � n and
there is an injective function f : m → n. By the pigeonhole principle,
it is impossible to have n less than m so by trichotomy, m ∈ n. Hence
the ordering on finite cardinals agrees with the ordering we defined in
Chapter 4.

4. Let κ be a cardinal. Then κ < 2κ. Indeed if A is any set of cardinality
κ then PA has cardinality 2κ. Then A � PA by the map x 7→ {x }.
But by Cantor’s theorem, A 6≈ PA and thus κ < 2κ. This shows that
there is no largest cardinal number.

Theorem 6.32. Scröder-Bernstein Theorem
Let A and B be sets and κ and λ cardinals. We have that

1. If A � B and B � A then A ≈ B

2. If κ ≤ λ and λ ≤ κ then κ = λ

Proof. By the definition of domination, we have injective functions f : A→
B and g : B → A. Consider the set C0 = A\ran g. If C0 = ∅ then g is
surjective and hence a bijection and we are done. Therefore we may assume
C0 is non-empty. We now define recursively the following sets:

Cn+ = g Jf JCnKK

We claim that

h(x) =

{
f(x) if x ∈ Cn for some n
g−1(x) if otherwise

is a bijection from A to B. Note that in the second case, x /∈ C0 and thus
x ∈ ran g so g−1 makes sense.
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We first show that h is injective. Define Dn = f JCnK so that Cn+ = g JDnK.
Consider x 6= x′ in A. Since both f and g−1 are injective, the only possible
problem arises when x ∈ Cm and x′ /∈

⋃
n∈ω Cn. In this case, we have that

h(x) = f(x) ∈ Dm

whereas

h(x′) = g−1(x) /∈ Dm

lest x′ ∈ Cm+. Hence h(x) 6= h(x′).
We now show that h is surjective. Obviously, each Dn ⊆ ran h since Dn =
h JCnK. Now consider a point y ∈ B\

⋃
n∈ωDn. We can see that g 6 inC0 by

definition. Furthermore, g(y) /∈ Cn+ since Cn+ = g JDnK , y /∈ Dn and g is
injective. Hence g(y) /∈ Cn for any n. Hence h(g(y)) = g−1(g(y)) = y.

Example 6.33.

1. If A ⊆ B ⊆ C and A ≈ C then all three sets are equinumerous.

2. The set of real numbers is equinumerous to the closed interval [0, 1]
since

(0, 1) ⊆ [0, 1] ⊆ R

3.

κ ≤ λ < µ =⇒ κ < µ

κ < λ ≤ µ =⇒ κ < µ

Theorem 6.34. The set of real numbers is equinumerous to ω2 and thus
equinumerous to Pω.

Proof. We shall show that R � ω2 and ω2 � R and then apply the Scröder-
Bernstein Theorem.

�: We shall construct an injective function from the open interval (0, 1) into
ω2. The existence of such a function together with the fact that R ≈ (0, 1)
will lead to R � ω2. We shall make use of the binary digit expansions of
real numbers. We define a function such that the real number whose binary
expansion is 0.1100010 . . . is mapped to the function in ω2 whose successive
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values are 1, 1, 0, 0, 0, 1, 0, . . . . In general, for a real number z ∈ (0, 1), let
H(z) be the function H(z) : ω → 2 whose value at n equals the (n + 1)st
binary digit in the binary expansion of z. Clearly H is injective.

�: We follow a similar argumentation for the converse. The function in ω2
whose successive values are 1, 1, 0, 0, 0, 1, 0, . . . is mapped to the real number
with decimal expansion 0.1100010 . . . . This maps ω2 injectively into the
closed interval [0, 1

9
.

Remark. The previous theorem shows us that |R| = 2ℵ0. Consequently, the
plane R2 has cardinality

2ℵ0 · 2ℵ0 = 2ℵ0+ℵ0 = 2ℵ0

Theorem 6.35. Let κ, λ and µ be cardinal numbers. Then

1. κ ≤ λ =⇒ κ+ µ ≤ λ+ µ

2. κ ≤ λ =⇒ κ · µ ≤ λ · µ

3. κ ≤ λ =⇒ κµ ≤ λµ

4. κ ≤ λ =⇒ µκ ≤ µλ if not both κ and µ equal zero

Proof. Let K,L and M be sets of cardinality κ, λ and µ respectively and
assume that κ < µ. We may thus choose K and L such that K ⊆ L and M
such that L ∩M = ∅. Parts 1,2 and 3 follow immediately since

K ∪M ⊆ L ∪M, K ×M ⊆ L×M, MK ⊆ ML

For Part 4, first consider the case when µ = 0. Then by assumption, κ 6= 0
and µκ = 0 ≤ µλ. Now suppose µ 6= 0. Fix a ∈ M . We need to exhibit an
injective function G from KM into LM . Let f ∈ KM and define G(f) to be
the function with domain L such that

G(f)(x) =

{
f(x) if x ∈ K
a if x ∈ L\K

Then G : KM → LM and is indeed injective.

Example 6.36. We can calculate the product ℵ0 · 2ℵ0 as follows:

2ℵ0 ≤ ℵ0 · 2ℵ0 ≤ 2ℵ0 · 2ℵ0 = 2ℵ0

whence equality holds throughout.
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6.5 Axiom of Choice

Definition 6.37. Let A be a set. We say that A is a chain if for any
B,C ∈ A then either B ⊆ C or C ⊆ B.

Theorem 6.38. The following statements are equivalent:

1. Axiom of Choice I: For any relation R, there exists a function F ⊆ R
with domF = domR

2. Axiom of Choice II: The Cartesian product of nonempty sets is always
nonempty. In other words, if H is a function with domain I and if
(∀ i ∈ I)H(i) 6= ∅ then there is a function f with domain I such that
(∀ i ∈ I)f(i) ∈ H(i)

3. Axiom of Choice III: For any set A there exists a function F (a choice
function for A) such that the domain of F is the set of nonempty
subsets of A and such that F (B) ∈ B for every nonempty B ⊆ A.

4. Axiom of Choice IV: Let A be a such such that

• each member of A is a nonempty set

• any two distinct members of A are disjoint

Then there exists a set C containing exactly one element from each
member of A

5. Cardinal Comparability: For any sets C and D, either C � D or
D � C. For any two cardinal numbers κ and λ, either κ ≤ λ or λ ≤ κ.

6. Zorn’s Lemma: Let A be a set such that for every chain B ⊆ A, we
have that

⋃
B ∈ A. Then A contains an element M (a maximal

element) such that M is not a subset of any other set in A

Proof.

1 =⇒ 2: Assume that H is a function with domain I such that H(i) 6= ∅
for all i ∈ I. Define the relation

R = { 〈i, x〉 | i ∈ I ∧ x ∈ H(i) }
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Then Statement 1 guarantees the existence of a function F ⊆ R such that
domF = domR. Since 〈i, F (i)〉 ∈ F ⊆ R, we must have that F (i) ∈ H(i).
Hence Statement 2 holds.

2 =⇒ 4: Let A be a set meeting the two conditions in Statement 4.
Define H to be the identity function on A. Then for all B ⊆ A we have that
H(B) 6= ∅. By Statement 2, there exists a function f with domain A such
that for all B ∈ A, f(B) ∈ H(B) = B. Let C = ran f . Then for B ∈ A, we
have that B ∩ C = { f(B) } (nothing else could be in this set by the second
condition).

4 =⇒ 3: Fix a set A. Define

A = { {B } ×B | B is a nonempty subset of A }

Then each member of Ais nonempty and any two distinct members are dis-
joint. Indeed if 〈x, y〉 ∈ ({B }×B)∩ ({B′ }×B) then x = B = B′. Now let
C be a set (whose existence is guaranteed by Statement 4) whose intersection
with each member of A is a singleton:

C ∩ ({B } ×B) = { 〈B, x〉 }

where x ∈ B. It is possible that C contains extraneous elemebts that do not
belong to any member of A. We discard them by letting F = C ∩ (

⋃
A).

We claim that F is a choice function for A. Any member of F belongs to
some {B }×B and hence is of the form 〈B, x〉 for x ∈ B. For any nonempty
subset B ⊆ A, there is a unique x such that 〈B, x〉 ∈ F since F ∩ ({B }×B)
is a singleton. This x is just F (B) and is a member of B and thus Statement
3 holds.

3 =⇒ 1: Let R be a relation.Then Statement 3 guarantees the existence
of a choice function G for ranR. Hence G(B) ∈ B for any nonempty subset
B of ranR. Define a function F with domF = domR by

F (x) = G({ y | xRy })

Then F (x) ∈ { y | xRy } whence 〈x, F (x)〉 ∈ R. Thus F ⊆ R.

6 =⇒ 1: Fix a relation R. We need to exhibit a function F ⊆ R such that
domF = domR. Consider the set

A = { f ⊆ R | f is a function }
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We shall apply Zorn’s Lemma to A in order to find such a function F . We
must first check that A is closed under unions of chains. Let B ⊆ A be a
chain. Since every member of B is a subset of R,

⋃
B is a subset of R. We

must show that
⋃
B is a function. Suppose 〈x, y〉 , 〈x, z〉 ∈

⋃
B. Then we

have that 〈x, y〉 ∈ G ∈ B and 〈x, z〉 ∈ H ∈ B for some functions G and H in
B. Since B is a chain, we must have that either G ⊆ H or H ⊆ G. In either
event, both 〈x, y〉 and 〈x, z〉 belong to the same function and thus y = z.
Thus

⋃
B ∈ A.

Now, Zorn’s Lemma guarantees us the existence of a maximal function F in
A. We claim that domF = domR. Suppose that x ∈ domR\domF . Since
x ∈ domR, by definition there is some y such that xRy. Define

F ′ = F ∪ { 〈x, y〉 }
Then F ′ ∈ A, contradicting the maximality of F . Hence domF = domR.

6 =⇒ 5: Let C and D be any sets. We shall show that either C � D or
D � C. Define

A = { f | f is an injective function ∧ domf ⊆ C ∧ ran f ⊆ D }
Let B ⊆ A be a chain. We know from the previous proof that

⋃
B is a

function. We must now show that it is injective. Let 〈x, y〉 , 〈x′, y〉 ∈
⋃
B

(where x and x′ are understood to be distinct elements of C). We have
that there exist injective functions G and H such that 〈x, y〉 ∈ G ∈ B and
〈x′, y〉 ∈ H ∈ B. Since B is a chain, we must have that either G ⊆ H or
H ⊆ G. Suppose, without loss of generality, that the first case holds. Then
〈x, y〉 , 〈x′, y〉 ∈ H. But H is an injective function so x = x′. Finally, consider
〈x, y〉 ∈

⋃
B. Then 〈x, y〉 ∈ f ∈ A whence x ∈ C and y ∈ D. It therefore

follows that dom
⋃
B ⊆ C and ran

⋃
B ⊆ D. Hence we may, and do, apply

Zorn’s Lemma to A.
Let f̂ be the maximal function in A whose existence is guaranteed by Zorn’s
Lemma. We claim that either dom f̂ = C (in which case, C � D) or ran f̂ =
D (in which case D � C since f−1 is an injective function from D into C).
Suppose, for a contradiction, that neither condition holds. Then there exists
elements c ∈ C\dom f̂ and d ∈ D\ran f̂ . It then follows that

f ′ = f̂ ∪ { 〈c, d〉 }

is in A, contradicting the maximality of f̂ .

The proof of this theorem is completed in Chapter 7.



CHAPTER 6. CARDINAL NUMBERS AND THE AXIOM OF CHOICE95

Theorem 6.39. Let A be an infinite set. Then ω � A. In other words,
ℵ0 ≤ κ for any infinite cardinal κ.

Proof. Fix an infinite set A. The idea of the proof is to select ℵ0 elements
from A. Let F be the choice function for A whose existence is guaranteed
by the Axiom of Choice III. Define, by recursion, the function h such that

h(0) = ∅
h(n+) = h(n) ∪ {F (A\h(n) }

We thus start with ∅ and successively add chosen new elements from A.
A\h(n)is nonempty since A is finite and h(n) is a finite subset. We may then
define the following function

g(n) = F (A\h(n))

where g is a function from ω to A. We must show that g is injective.
Suppose that m 6= n. By trichotomy, we must have that one number is less
than the other, say m ∈ n. Then m+ ∈ n and so

g(m) ∈ h(m+) ⊆ h(n)

But g(n) /∈ h(n) since

g(n) = F (A\h(n)) ∈ A\h(n)

hence g(m) 6= g(n).

Corollary 6.40. A set is infinite if and only if it is equinumerous to a proper
subset of itself.

Proof. One implication in this theorem was proven in Corollary 6.12 where
we showed that if a set is equinumerous to a proper subset of itself, then it
is infinite.
Conversely, consider an infinite set A. Then by the previous theorem, there
exists an injective function f from ω into A. Define a function g from A into
A by

g(f(n)) = f(n+) for n ∈ ω
g(x) = x for x /∈ ran f

then g is a bijection between A and A\ { f(0) }.
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6.6 Countable Sets

Definition 6.41. Let A be a set. We say that A is countable if A � ω. In
other words, |A| ≤ ℵ0.
Example 6.42. ω,Z,Q are all countable sets. However, R is uncountable.

Example 6.43. Let A and B be countable sets. Then C = A∪B is countable
as its cardinality |C| ≤ ℵ0 + ℵ0 = ℵ0. D = A × B is also countable as
|D| =≤ ℵ0 · ℵ0 = ℵ0.

Theorem 6.44. The countable union of countable sets is necessarily count-
able. In other words, if A is countable and every member of A is countable
then

⋃
A is countable.

Proof. We may first suppose that ∅ /∈ A since its presence does not affect set
union. We may further suppose that A 6= ∅ since

⋃
∅ is indeed countable.

Thus A is a countable collection of non-empty sets. We shall construct a
function from ω × ω onto

⋃
A. Since we know that there exists functions

from ω onto ω × ω, the composition will map ω onto
⋃
A whence

⋃
A is

countable.
Since A is countable but non-empty, there exists a function G from ω onto
A:

A = {G(0), G(1), . . . }

By assumption, each set G(m) is countable and non-empty. Hence for each
m, there is a function from ω onto G(m). We shall use the axiom of choice to
select a suitable function for each m. Consider the function H : ω → ω (

⋃
A)

defined by

H(m) = { g | g is a function from ω onto G(m) }

Obviously, H(m) is non-empty for each m ∈ ω. By the axiom of choice,
there exists a function F with domain ω such that for each m ∈ ω, F (m) is
a function from ω onto G(m). We can now define f(m,n) = F (m)(n) which
is a function from ω × ω onto

⋃
A.

Example 6.45. Let A be a set. We define a sequence in A to be a function
from some natural number into A. Let Sq(A) be the set of all sequences in
A:

Sq(A) = { f | (∃n ∈ ω)f maps n into A }
= 0A ∪ 1A ∪ 2A ∪ . . .
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We define the length of a sequence to be its domain.
Sq(A) is indeed a valid set as if f : n→ A then

f ⊆ n× A ⊆ ω × A

whence f ∈ P(ω × A). Hence Sq(A) ⊆ P(ω × A).
We now have the following:

1. Sq(ω) has cardinality ℵ0. Indeed, consider any f ∈ Sq(ω) and let n be
its length. Then define

H(f) = 2f(0)+1 · 3f(1)+1 . . . p
f(n−1)+1
n−1

where pi is the (i+ 1)st prime (if the length of f is 0 then H(f) = 1).
Hence H : Sq(ω)→ ω and, by the fundamental theorem of arithmetic,
H is injective. Hence Sq(ω) ≤ ℵ0. The opposite inequality follows
trivially.

2. Sq(A) is countable for any countable set A. Since A is countable, there
exists an injective function g from A into ω. This function naturally
induces an injective mapping from Sq(A) into Sq(ω). Hence |Sq(A)| ≤
|Sq(ω)| = ℵ0.

3. There are ℵ0 algebraic numbers. We first note that the set Z of integers
has cardinality ℵ0 + ℵ0 = ℵ0. We next calculate the cardinality of the
set of polynomials P with integer coeffcients. To each polynomial (of
degree n), we may assign a sequence (of length n + 1) consisting of
its coefficients. This defines an injective mapping from P into Sq(Z)
which is a countable set. Hence P is countable. Since each polynomial
in P has only finitely many roots, the set of algebraic numbers is a
countable union of finite sets. Therefore, the algebraic numbers are
countable. Since the set of algebraic numbers is infinite, it must have
cardinality ℵ0.

4. There are uncountably many transcendental numbers. Since the set
of algebraic numbers is countable, the set of transcendental numbers
cannot be countable, lest the set R is countable.
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6.7 Arithmetic of Infinite Cardinals

Lemma 6.46. Let κ be an infinite cardinal. Then κ · κ = κ.

Proof. Let B be a set of cardinality κ. It suffices to show that B × B ≈ B.
Define

H = { f | f = ∅ or for some infinite A ⊆ B, f is a bijection between A× A and A }

We shall use Zorn’s Lemma to obtain a maximal function f0 in H.
We must first check that H is closed under unions of chains. Let C be a
chain in H. We may assume that C contains some non-empty function else⋃
C = ∅ ∈ H. From previous results, we know that

⋃
C is an injective

function. Define the set

A =
⋃
{ ran f | f ∈ C } = ran

⋃
C

A is infinite since C contains some non-empty function. We claim that
⋃
C is a

bijection between A×A and A. It hence suffices to show that dom C = A×A.
Let 〈a1, a2〉 ∈ A× A. Then a1 ∈ ran f1 and a2 ∈ ran f2 for some f1, f2 ∈ C.
Since C is a chain, we have that f1 ⊆ f2 or f2 ⊆ f1. Without loss of generality,
we may assume that f1 ⊆ f2. Then

〈a1, a2〉 ∈ ran f2 × ran f2 = domf2 ⊆
⋃
{ domf | f ∈ C } = dom

⋃
C

Conversely, any member of dom
⋃
C belongs to domf for some f ∈ C. But

domf = ran f × ran f ⊆ A× A. Hence dom
⋃
C = A× A whence

⋃
C is a

bijection between A× A and A.
Zorn’s Lemma now guarantees the existence of a maximal f0 ∈ H. We must
first check that f0 6= ∅. Since B is infinite, it has a subset A of cardinality
ℵ0. Since ℵ0 × ℵ0 = ℵ0, there is a bijection g between A× A and A. Hence
g ∈ H. Since g has more elements than ∅, it follows that ∅ can not be
a maximal element of H. Hence, by the definition of H, f0 is a bijection
between A0 × A0 and A0 where A0 is some infinite subset of B.
Now let λ = |A0|. Then λ is infinite and λ× λ = λ. We shall now show that
λ = κ and that B\A0 necessarily has smaller cardinality.
Suppose that λ ≤ |B\A0|. Then B\A0 has a subset D of cardinality λ. We
shall show that this contradicts the maximality of f0 by extending f0 to a
bijection between the sets (A0 ∪D)× (A0 ∪D) and A0 ∪D. We have that

(A0 ∪D)× (A0 ∪D) = (A0 × A0) ∪ (A0 ×D) ∪ (D × A0) ∪ (D ×D)
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A0 × A0 is already in bijection with A0 by f0. The remainder

(A0 ×D) ∪ (D × A0) ∪ (D ×D) (6.1)

has cardinality

λ · λ+ λ · λ+ λ× λ = λ+ λ+ λ

= 3 · λ
≤ λ× λ
= λ

Hence there exists a bijection between (6.1) and D. It follows that f0∪g ∈ H
and properly extends f0, contradicting the maximality of f0. Thus |B\A0| <
λ.
Now

κ = |A0|+ |B\A0|
≤ λ+ λ = 2 · λ ≤ λ · λ = λ ≤ κ

whence λ = κ. Hence κ · κ = κ.

Theorem 6.47. Absorption Law of Cardinal Arithmetic
Let κ and λ be cardinal numbers, the larger of which is infinite and the smaller
of which is nonzero. Then

κ+ λ = κ · λ = max(κ, λ)

Proof. Without loss of generality, we may assume that λ ≤ κ. Then

κ ≤ κ+ λ ≤ κ+ κ = 2 · κ ≤ κ× κ = κ

and

κ ≤ κ× λ ≤ κ× κ = κ

Hence equality holds throughout.

Example 6.48. The operation of subtraction for infinite cardinal numbers
is not well defined. If one starts with ℵ0 objects and removes ℵ0 objects then
the number of remaining objects can be anywhere from 0 to ℵ0. However, if
one starts with κ (where κ is infinite) objects and removes λ objects (where
λ is strictly less than κ) then exactly κ objects remain. To see this, let µ be
the cardinality of the remaining objects. Then κ = λ+µ = max(λ, µ) whence
κ = µ
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Example 6.49. There are 2ℵ0 transcendental numbers. This follows from
the previous example. If from 2ℵ0 real numbers one removes ℵ0 algebraic
numbers, then 2ℵ0 numbers remain.

Example 6.50. For any infinite cardinal κ, we have that κκ = 2κ. Indeed

κκ ≤ (2κ)κ = 2κ·κ = 2κ ≤ κκ

whence equality holds throughout.

Example 6.51. The cardinality of RR is 22ℵ0 . Indeed, the cardinal number
of the set is

(2ℵ0)2
ℵ0 = 2ℵ0·2

ℵ0 = 22ℵ0

We now want to consider the cardinality of the real valued continuous func-
tions. Denote the continuous functions in RR by C(R). It is easy to see
that

2ℵ0 ≤ |C(R)| ≤ 22ℵ0

We claim that |C(R)| = 2ℵ0. First consider the map

h : C(R)→ QR
f 7→ f |Q

We claim that h is an injective mapping. Let f, g ∈ C(R) be distinct func-
tions. Then f − g is not identically zero. It follows that, since f and g are
continuous, there exists an open interval upon which f − g is nonzero. Such
an interval must contain a rational number and hence

h(f) = f |Q 6= g|Q = h(g)

and hence h is injective. It follows that C(R) � QR whence

|C(R)| ≤
∣∣QR∣∣ = (2ℵ0)ℵ0 = 2ℵ0

Therefore |C(R)| = 2ℵ0.
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6.8 Continuum Hypothesis

The continuum hypothesis asserts that there does not exist sets of cardinality
κ such that ℵ0 < κ < 2ℵ0 . It was proved by Gödel in 1939 that the hypothesis
could not be disproved. In 1963, Cohen showed that the hypothesis can not
be proved from the Zermelo-Fraenkel axioms either. It is therefore undecid-
able.
The generalised continuum hypothesis asserts that for any infinite cardinal
κ, there does not exist a cardinal number λ such that κ < λ < 2κ.



Chapter 7

Orderings and Ordinals

7.1 Partial Orderings

Definition 7.1. Let R be a relation. We say that R is a partial ordering
if the following two conditions are met:

• R is a transitive relation:

xRy ∧ yRz =⇒ xRz

• R is irreflexive:

It is never the case that xRx

Example 7.2. Let S be a set. Define ⊂S to be the relation of strict inclusion
on subsets of S:

⊂S= { 〈A,B〉 | A ⊆ B ⊆ S ∧ A 6= B }

Then ⊂S is a partial ordering.

Example 7.3. Let P be the set of positive integers. The strict divisibility
relation on P is

{ 〈a, b〉 ∈ P × P | a · q = b for some q 6= 1 }

102
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Theorem 7.4. Let < be a partial ordering. Then, given any x, y and z, we
have that

1. At most one of the three following alternatives can hold:

x < y, x = y, y < x

2. x ≤ y ≤ x =⇒ x = y

Proof.

Part 1: Suppose we had both x < y and x = y. Then we would have
that x < x, contradicting irreflexivity. If both x < y and y < x then, by
transitivity, we conclude that x < x, again contradicting reflexivity.

Part 2: Suppose that x 6= y. Then we would have that x < y < x,
contradicting Part 1.

Definition 7.5. A structure is a pair 〈A,R〉 consisting of a set A and a
binary relation R on A.

Remark. In particular, we can speak of a partially ordered structure
(or linearly) if R is a partial (or linear) ordering relation on A. These are
sometimes referred to as posets (or losets).

Definition 7.6. Let < be a partial ordering and D a set. An element m of
D is said to be a minimal element of D if for all x ∈ D, x 6< m. m is a
least element of D if m ≤ x for all x ∈ D. A least element is necessarily
minimal.
Similar definitions apply to maximal and greatest elements.

Remark. For a linear ordering on a set that includes D, the two concepts
coincide since

x 6< m =⇒ m ≤ x

In the nonlinear case, minimality is weaker than leastness.

Example 7.7. Consider the strict divisibility relation on the set P of positive
integers. Then 1 is the least element of P . But let D = { a ∈ P | a 6= 1 }.
Then every prime is a minimal element of D and D has no least element.
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Definition 7.8. Let < be a partial ordering on a set A and consider a subset
C ⊆ A. An upper bound of C is an element b ∈ A such that x ≤ b for all
x ∈ C. If b ∈ C then b is the greatest element of C.
If b is the least element of the set of all upper bounds for C then b is the
least upper bound (or supremum) of C. Similar definitions apply to
lower bounds and greatest lower bounds (or infimums)

Example 7.9. Consider a set S and the partial ordering ⊂S on P(S). For
A and B in P(S), the set {A,B } has the least upper bound A∪B. Similarly,
A ∩ B is the greatest lower bound. If A ⊆ P(S) then

⋃
A is the least upper

bound of A and
⋂
A is the greatest lower bound.

Example 7.10. Consider the set {x ∈ Q | x2 < 2 }. This set has upper
bounds in Q but it has no least upper bound in Q.

7.2 Well Orderings

Definition 7.11. A well ordering on a set A is a linear ordering on A
such that every nonempty subset of A has a least element.

Example 7.12. The usual ordering on ω is a well ordering.

Theorem 7.13. Let < be a linear ordering on A. Then A is a well ordering if
and only if there does not exist a function f : ω → A such that f(n+) < f(n)
for all n ∈ ω.

Proof. We shall refer to a function satisfying the conditions of the theorem
as a descending chain.

=⇒ : Let f be a descending chain. Then ran f is a nonempty subset of A.
Clearly, ran f has no least element. Indeed, for each element f(n), there is
a smaller element f(n+). Hence < cannot be a well ordering.

⇐= : Assume that < is not a well ordering on A. By definition, some
nonempty subset B ⊆ A lacks a least element. Then (∀x ∈ B)(∃ y ∈ B)y <
x. Fix x ∈ B and define a function f : ω → B recursively as follows:

f(0) = x

f(n+) = y
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where y ∈ B is chosen such that y < f(n) (the existence of which is always
guaranteed by the fact that B lacks a least element). Then f is a descending
chain with f(n+) < f(n) for all n ∈ ω.

Definition 7.14. Let A be a set and < any kind of ordering on A. Then the
set

seg t = {x | x < t }

is called the initial segment up to t.

Example 7.15. Let n ∈ ω (with the usual ∈ ordering). Then

segn = {x | x ∈ n } = n

Theorem 7.16. Transfinite Induction Principle
Let < be a well ordering on A. Let B ⊆ A be a subset and assume that for
every t ∈ A,

seg t ⊆ B =⇒ t ∈ B

Then B coincides with A.

Proof. Suppose that B is a proper subset of A. Then A\B has a least element
m. By leastness, y ∈ B for any y < m. But this is equivalent to segm ⊆ B
and thus m ∈ B.

Definition 7.17. Let A be a set and B ⊆ A a subset. We say that B is a
<-inductive subset of A if and only if it has the property that for every t ∈ A,

seg t ⊆ B =⇒ t ∈ B

Remark. We can now reformulate the transfinite induction principle as fol-
lows: If < is a well ordering on A then any <-inductive subset of A must
coincide with A.

Theorem 7.18. Let < be a linear ordering on A. Assume that the only <-
inductive subset of A is A itself. In other words, assume that for any B ⊆ A
satisfying the condition

(∀ t ∈ A)(seg t ⊆ B =⇒ t ∈ B) (7.1)

we have that B = A. Then < is a well ordering on A.



CHAPTER 7. ORDERINGS AND ORDINALS 106

Proof. Let C be a subset of A. We claim that either C has a least element
or C is empty. Consider the following set of strict lower bounds of C:

B = { t ∈ A | t < x∀x ∈ C }

First note that B ∩ C = ∅, lest t < t. We now have two cases:

Condition (7.1) does not hold for B: In this case, there exists some t ∈ A
such that seg t ⊆ B but t /∈ B. We claim that t is a least element of C. Since
t /∈ B, there exists some x ∈ c with x ≤ t. But x cannot belong to seg t
which is disjoint from C. Thus x = t is a least element of C.

Condition (7.1) holds for B: By hypothesis, A = B whence C = ∅.

Definition 7.19. Let A be a well ordered set and G a function on A whose
value at t ∈ A is dependent on all values G(x) for x < t. We say that a
function F is G-constructed if, given t ∈ A, the following holds:

F (t) = G(F |seg t)

Remark. For the right hand side of the above equation to be valid, the do-
main of the function G must contain all functions of the form F |seg t.

Definition 7.20. We define the set <AB to be the set of all functions from
initial segments of < into B:

<AB = { f | for some t ∈ A, f is a function from seg t into B }

Remark. Note that if f : seg t → B then f ⊆ A × B. Hence <AB is
obtainable by applying applying a suitable subset axiom to P(A×B).

Theorem 7.21. Transfinite Recursion Theorem, Preliminary Form
Let < be a well ordering on a set A. Furthermore, let G :<A B → B. Then
there exists a unique function F : A→ B such that, given any t ∈ A,

F (t) = G(F |seg t)

Example 7.22. Consider the well ordered natural numbers ω. We have for
each n ∈ ω the equation segn = n. Hence the transfinite recursion theorem
asserts the existence of a unique F : ω → B such that, for all n ∈ ω,

F (n) = G(F |n)
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In particular:

F (0) = G(F |0) = G(∅)

F (1) = G(F |1) = G({ 〈0, F (0)〉 })
F (2) = G(F |2) = G({ 〈0, F (0)〉 , 〈1, F (1)〉 })


